《港大李文迪教授Adv. Funct. Mater.: 用于柔性电子的模板电沉积法制备金属纳米纤维网络》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-07-01
  • 柔性电子设备(如柔性显示器,柔性太阳能电池和柔性传感器)的快速发展已经引起对高性能柔性透明电极(Transparent Electrode, TE)的需求的增加,其可以在机械变形下保持高导电率和光学透射率。导电金属氧化物薄膜如氧化铟锡(ITO)等,在过去的几十年中被广泛应用于电子器件中作为高性能的TE。但由于ITO固有的局限性如材料的稀缺性和脆性,近年来研究人员一直致力于研究新一代柔性电子产品TE的替代品。而基于金属结构的TE,由于其优良的导电性、光学透过率和机械弯曲性,被认为是非常有前途的候选材料。其中,银纳米线(AgNW)网络以其理想的光电性能、优良的柔韧性和简单的制作工艺,获得了广泛的研究。由于超长AgNW网络能在不牺牲光学透过率的情况下有效地提高导电率,基于超长AgNW网络的TE可以表现出优于商用高性能ITO薄膜的性能。然而,在实际应用中,仍然存在着阻碍AgNW网络进一步发展的技术挑战,包括由于高接触电阻导致的对后处理工艺的需求,由AgNW的随机分布而造成的可重复性问题,以及超长AgNW的较高制造成本等等。而基于电纺聚合物网络的金属纳米纤维网络(Metallic Nanofiber Networks, MNFN)由于其超高的长径比而具备的优异性能成为了另一类具有吸引力的结构金属TE。许多研究报道了MNFN-TE的制备,但在实际制造过程中大多存在局限性,如静电纺丝工艺可重复性差、复杂而耗时的金属化、昂贵的真空加工以及纳米纤维的随机分布导致的制备重现性差。此外,大多数报道的MNFN具有覆盖整个区域的金属纳米纤维,需要一个额外的图案化处理过程来制作功能电路图形,这在许多光电子器件应用中是必不可少的步骤。

    【成果简介】

    最近,香港大学李文迪教授团队报道了一种利用模板电沉积和压印转移制备高性能金属纳米纤维网络-柔性透明电极(MNFN-TE)的低成本方法。该方法采用的电沉积模板具有玻璃/氧化铟锡/二氧化硅三层结构,绝缘二氧化硅层中有纳米沟槽,可用于MNFN的重复电沉积,然后将其转移到柔性基板上。制备的TEs具有良好的光学透过率(>84%)和电导率(<0.9 Ω sq−1),并且在3 mm的弯曲半径下显示出理想的机械柔韧性和薄层电阻<2 Ω sq−1。同时,从可重复利用模板中复制的MNFN-TE展示出一致和稳定可靠的性能。此外,基于模板的方法还可以通过对模板的选择性掩蔽来实现具有任意导电图形的MNFN-TE的直接图案化。团队利用该方法制备了一种柔性动态电致发光(EL)显示器,并从正反两方面可以观察到其发光图案。该方法为新一代的TE制备提供了新思路,并且有巨大潜力应用于下一代TE中。相关成果以“Scalable Fabrication of Metallic Nanofiber Network via Templated Electrodeposition for Flexible Electronics”发表于Adv. Funct. Mater.期刊上。

  • 原文来源:http://www.cailiaoniu.com/178665.html
相关报告
  • 《苏州纳米所李清文团队成功实现>7GPa碳纳米管纤维制备》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-10-18
    •   碳纳米管纤维(Carbon nanotube fiber, CNTF)是由大量一维碳纳米管组装而成的宏观纤维材料,其碳纳米管组装单元(CNT)在理论上具备超高的力学与电学性能,使得碳纳米管纤维展现出兼具金属纤维、高分子纤维及碳纤维的综合性优势。在多种碳纳米管纤维常用制备方法中,浮动催化直接纺丝法(floating catalysis chemical vapor deposition, FCCVD)由于具有极高的制备效率,被认为是碳纳米管纤维宏量制备的关键技术。然而,该方法制备的碳纳米管纤维存在着大量的碳纳米管弯曲、缠结及管间孔隙等缺陷,限制了纤维性能的充分发挥以及实际应用。为此,研究人员通过多种后处理手段进行浮动催化碳纳米管纤维的性能增强研究。总体而言,现有后处理手段往往只着重关注纤维中的某一类型缺陷,且关于纤维微观结构变化对纤维载荷传递与性能的影响机理尚不明晰,阻碍了碳纳米管纤维性能的进一步提升。因此,发展出可同时实现纤维再取向及致密化的综合后处理技术,已然成为高性能碳纳米管纤维研究与应用领域的关键。   本工作中,中国科学院苏州纳米所李清文团队开发出一种针对浮动催化法碳纳米管纤维的新型综合后处理增强策略,主要包括氯磺酸辅助牵伸取向与辊压致密,可实现碳纳米管纤维中碳纳米管取向度及管间堆积致密度的同步提升。此外,通过纤维表面及断面的高分辨SEM、广角X射线散射(WAXS)、偏振Raman光谱及BET分析等多种微观结构表征手段,揭示出纤维微观结构演变对纤维力电性能的影响及增强机理。研究表明,纤维内碳纳米管弯曲、缠结及管间孔隙等缺陷在后处理过程中得到显著降低,对纤维性能提升十分有利。进一步地,通过后处理参数优化,得到了综合性能优异的碳纳米管纤维,其中,纤维拉伸强度达到7.67 GPa,弹性模量达到230 GPa,电导率提升至4.36×106 S/m。   浮动催化碳纳米管纤维的多步后处理工艺,首先为氯磺酸辅助牵伸取向过程(图1a),碳纳米管纤维原丝进入氯磺酸中,发生质子化膨胀从而降低管间范德华作用,经过牵伸取向作用及凝固浴中凝固收缩致密作用,然后进行热退火去除纤维中的杂质(图1b),最后进行辊压致密化(图1c),从而实现碳纳米管纤维取向度和致密度的同步提升。   多步后处理过程中碳纳米管纤维微观结构发现显著变化,纤维表面及断面的SEM和纤维断面TEM表征结果显示,氯磺酸辅助牵伸可提升纤维内碳纳米管的取向度和排列致密度,而辊压致密化处理可进一步提升纤维致密度。  图3a-c中通过密度和BET分析表征了纤维致密度及孔隙缺陷的变化情况,显示氯磺酸辅助牵伸和辊压过程均有效降低了碳纳米管纤维中孔隙缺陷,提升了纤维致密性。图3d-h通过WAXS表征了纤维中碳纳米管取向性的变化情况,图3i偏振Raman表征验证了纤维取向度变化,结果均显示纤维取向度的提升主要来自氯磺酸辅助牵伸过程,而辊压过程则可进一步少量提升纤维的取向度。   图4为多步后处理过程中的不同牵伸率、牵伸速率、凝固浴成分及辊压速度条件对碳纳米管纤维力学拉伸性能的影响,从而获得了多步后处理过程的最佳处理条件,牵伸率为16%,牵伸速率为0.058 m/min,凝固浴采用二氯甲烷(DCM),辊压速率为0.5 cm/min。同时,研究团队也研究了不同处理条件对碳纳米管纤维导电性的影响。   经过处理条件优化,研究团队制备的高性能碳纳米管纤维具有极高的力学、电学性能,其拉伸强度达到7.67 GPa,弹性模量达到230 GPa,电导率达到4.36×106 S/m。与传统高性能纤维相比,该高性能碳纳米管纤维具有高强、高导电的综合性能优势,同时,碳纳米管纤维还展现出良好的可加工性和电热转化性能。总体而言,本工作中碳纳米管纤维的力学与电学性能均达到浮动催化碳纳米管纤维领域中的最高水平。相关工作以Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification为题发表于Nano Research,中国科学院苏州纳米所吴昆杰副研究员、博士生牛宇涛及江西省纳米技术研究院博士后王彬为论文的共同第一作者,通讯作者为中国科学院苏州纳米所张永毅研究员、勇振中研究员,北京石墨烯研究院蹇木强研究员和中国科学院苏州纳米所李清文研究员。上述研究工作得到了国家重点研发计划、国家自然科学基金等项目的支持。
  • 《苏州纳米所张珽团队PMS顶刊综述:电纺纤维柔性电子:纤维制备,器件平台,功能集成和应用》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-05-09
    •   在过去的二十年中,柔性电子产品因其独特性质在电子皮肤、人机界面、柔性显示、可穿戴设备、便携式能源装置和植入式器械等领域的众多潜在应用而备受关注。电纺纤维具有优异的力学性能和可调控的物理化学性能,在用于制造新兴的柔性电子产品方面展示出巨大的前景。本文全面回顾了基于静电纺丝的柔性电子(图1),包括电纺技术简介、电纺纤维多样性、电纺纤维电子器件集成策略和各种器件平台(包括电极、电阻、电容、压电/ 摩擦电、电化学和晶体管等类型)。这些基于电纺纤维的柔性电子器件可以集成多种传感模式、无线通信、自供电和热管理功能。得益于电纺纤维优异的柔韧性、坚固性、高孔隙率、多样化的纤维形态和组装形式、重量轻、制备成本低等众多优点,电纺纤维柔性电子产品在个人医疗保健和人体监测方面发挥着越来越重要的作用,可用于生物物理信号、生化信号和电生理信号检测,并可作为植入式器件促进细胞和组织再生。文章结尾,作者对现阶段工作进行了总结,并对电纺丝纤维的柔性电子领域的发展进行展望。   静电纺丝广泛用于制备具有非凡性能的超细纤维,其制备获得的纤维产品具有高表面积、高孔隙率、柔韧性和结构多样化等优点,广泛应用于组织工程、药物控释、水处理、光电器件、储能器件和柔性电子等众多领域,受到学术界和工业界的极大关注。自从2000年,发表的关于静电纺丝的文章已超过5万篇。于此同时,柔性电子产业迅速发展。在过去的二十年里,发表的关于柔性电子的论文已超过3万篇。特别是最近10年,电纺纤维柔性电子发展迅速,并且呈现持续迅速发展势态,在2022年,发表的关于电纺纤维柔性电子的研究占比柔性电子整个领域超过2.5%。然而,关于电纺纤维柔性电子的高水平综述文章依旧缺乏。为了填补该空缺,本文从电纺技术与电纺纤维制备、器件平台、功能集成和应用方面详细总结电纺纤维柔性电子的研究进展。   作者将电纺纤维柔性电子的发展分为四个阶段:在第一阶段(2000-2012年),研究人员主要专注于导电电纺纤维的制备和电学性能调控。2012年至2016年(第二阶段),纳米生物电子支架、纳米纤维加速度计、可拉伸晶体管、柔性太阳能电池等基于电纺纤维的新型柔性电子器件开始进入人们的视野,并因其优异的性能而受到越来越多的关注。通过前两个阶段的发展,电纺纤维柔性电子在第三阶段(2016-2020)在材料和器件原型方面取得了重大进展。在此阶段,科研人员探索了许多新颖的柔性电子设备,并在各种应用场景中对其性能进行了很好的检验,例如用作可穿戴电子设备或植入式电子器件。这些柔性器件包括超薄纳米纤维网柔性器件、全纤维电子器件、基于单纤维的人工突触、心脏电子贴片等。自2020年以来(第四阶段),基于电纺纤维的电子产品在发表的文献数量和设备性能方面都取得了爆炸性的进步,并且这种快速的进步仍在继续之中。   电纺纤维的成分具有多样性,可以通过聚合物、小分子、胶体和复合材料加工制备,使其物理和电学性能根据具体应用具有高度的可调节性。在柔性电子器件中,电纺纤维可用作不同组件成分,如导电元件、基底材料、增强成分,甚至是构建全纤维结构器件。此外,受益于电纺纤维的多样化结构(例如,多孔、空心、核-壳、多通道和纳米带)及其组成多样(例如,单纤维、纱线、对齐纤维、随机纤维、纤维垫和 3D 多孔结构), 电纺纤维使得柔性电子器件具有一系列特殊优势,包括柔韧性、透明性、导电性、透气性、自愈能力和耐洗性,赋予设备高性能和某些独特的功能。基于静电纺丝纤维的电子产品可以作为不同的平台,包括拉伸电极、电阻传感器、电容传感器、摩擦/压电传感器、晶体管、纳米发电机和植入式设备等,用于监测一系列人体活动、电生理信号、生物分子信号,实现随时随地获取个人健康信息。   文章共包含六个章节:第一章为背景介绍,第二章为静电纺丝技术和电纺纤维,第三章关于电纺纤维柔性电子平台,第四章关于电纺纤维柔性电子器件的功能集成,第五章关于电纺纤维柔性电子的应用场景,第六章为总结和展望。   在背景介绍中,作者介绍了电纺纤维柔性电子研究背景。随着科学技术的进步,电纺纤维柔性电子受到人们的关注迅速上升。经过近二十几年的发展,无论器件形式还是器件性能都获得了巨大的进步(图2)。电纺纤维的众多特性赋予了柔性电子独特的应用优势,使其可广泛应用于健康检测各个方面。   静电纺丝技术和电纺纤维章节中,作者介绍了静电纺丝技术发展简史、静电纺丝技术原理(图3)、不同静电纺丝方法、用于制备电纺纤维的材料、电纺纤维结构多样性和电纺纤维的规模化制备技术。其中,用于制备电纺纤维的材料种类多样,包括聚合物、小分子、胶体和复合材料。  电纺纤维柔性电子平台章节中,作者首先介绍了电纺纤维用作柔性电子平台具有多重优点,包括材料多样性、纤维形貌多样性、大比表面积、柔韧性、透气性等。接着,介绍了电纺纤维用于制备柔性电子的制备策略,可用作柔性电子的基底材料、增强成分、电活性成分,甚至用于制备全纤维结构器件。电纺纤维组装体具有结构多样性特点,柔性电子器件可基于其单纤维结构、纱线结构、二维纤维网络结构、三维纤维网络结构、纤维复合水凝胶,制备的柔性电子具有也具有结构多样性(图4),极大丰富了电子器件的结构类型,满足不同场景的应用需求,如拉力、压力、温度、湿度、气体和电化学传等。   电纺纤维柔性电子器件的功能集成章节中,作者介绍了电纺纤维柔性电子器件的功能集成,包括多模态(图5)、自供能、无限通讯功能、热管理、自清洁和生物相容性功能的传感装置和系统。上述功能的集成,有利于电纺纤维柔性电子更好地满足实际应用需求。   电纺纤维柔性电子具有众多应用场景,该章节中,作者重点介绍了用于人体生物物理信号、生物化学信号、生物电信号(图6)的检测和作为植入式生物电子用于促进细胞和组织再生。   在总结和展望中,作者表示,虽然电纺纤维柔性电子已经取得了巨大进展,但是仍旧面临诸多挑战,例如,直接制备高导电纤维、纤维器件的长期稳定性、功能集成和规模化制备等。解决上述问题,实现电纺纤维柔性电子器件服务于人们日常生活依然还有很长的路要走。   该综述论文以Electrospun Fiber-Based Flexible Electronics: Fiber Fabrication, Device Platform, Functionality Integration and Applications为题,发表在材料科学顶级期刊Progress in Materials Science上。中国科学院苏州纳米所张珽研究员为该综述通讯作者,高强博士后为该论文第一作者,共同作者还包括静电纺丝领域著名学者德国拜罗伊特大学的Seema Agarwal教授和Andreas Greiner教授。该研究得到了国家相关人才计划、国家自然科学基金面上项目和中国博士后科学基金面上项目(第72批)的资助。