《苏州医工所在微小模式生物流式成像研究方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-01-17
  • 模式生物是生命科学研究中的理想研究材料,生命科学领域的发展强烈依赖于模式动物资源的开发与利用,以斑马鱼、线虫、涡虫等为代表的微小模式动物在基于生命体活体表征的疾病模型药物筛选中发挥着越来越重要的作用。然而,目前在利用微小型模式动物开展科学研究过程中主要以手工分拣筛选和利用传统显微镜进行局部成像为主,不仅工作量大而且数据采集效率低下,无法实现大规模实时分析,无法有效发挥微小模式动物的自身优势,更无法适应中大规模遗传/药物筛选需求。因此,生命科学领域需要一套基于大颗粒成像的流式分析与分选系统,来帮助他们进行高效率的微小模式生物的成像及分选。

      在中国科学院仪器装备研制项目的支持下,由上海生科院潘巍峻研究员提出需求和应用方向,中国科学院苏州医工所李辉课题组开发了一套针对斑马鱼等微小模式动物高速成像及分选系统。类似于流式细胞仪对细胞进行检测与成像,本系统实现对 100 微米 ~ 2mm 的微小模式生物流过微流道时的高通量自动成像。系统采用片层光照明和高速的线阵 CCD相机,成像速度可以达到每秒 10到15胚胎 ,比国外类似成像设备成像速度提高 10倍以上。

      针对采集到的大量斑马鱼胚胎图像,本工作进一步开发了图像分割及识别的软件算法。可以使用自动识别出未破膜的斑马鱼胚胎和已破膜的斑马鱼胚胎,并可根据识别的结构自动进行胚胎死亡 \存活的判读,以及胚胎形态特征的自动分析。

      本设备的开发将满足并积极推动微小型模式动物在生物医学领域中的大规模应用,加速相关领域研究进展和基于表型筛选的新型药物研发进程。相关工作已发表在美国光学学会期刊 Biomedical Optics Express上 (DOI: https://doi.org/10.1364/BOE.8.005651),被被选为 Editors’pick 文章重点推荐。   

相关报告
  • 《苏州医工所在超构表面微型高光谱成像研究中取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-05-19
    •  光谱是物质的基本属性之一,被视为物质的指纹。光谱成像通过记录不同空间位置的光谱来捕捉物质的空间和光谱信息,不仅可以感知物质的客观存在,还可以了解物质的组分。光谱成像技术已被广泛用于食品安全、生物医学、环境监测和卫星遥感等领域。光谱成像系统通常由光谱器件(色散元件或滤色片)和CMOS图像传感器组成。由于这些光谱器件的体积和质量普遍较大,导致成像系统的结构复杂、体积庞大且成像速度较慢。这与实际应用中小型化、轻量化和集成化的需求相矛盾。   为解决上述问题,中国科学院苏州医工所李辉团队与中国科学院光电所郭迎辉团队合作,研发了一种基于超构表面的微型高光谱成像器件。科研人员首先提出并验证了准随机超级单元构成的计算型高光谱超构表面设计方法。准随机超级单元具有严格的对称性,光谱器件的偏振敏感性较低,因此由准随机超级单元构成的光谱器件可以更好地应用于复杂的工作环境。而超级单元的周期打破了亚波长尺度的限制,设计自由度得到显著提升,极大丰富了单元结构的种类,使选择的单元结构对应的透射光谱满足了压缩感知算法的需求,同时也降低了超构表面的加工难度,缩减了器件加工的成本和周期。   超构表面每个超级单元采用遗传算法和压缩感知来实现高光谱重构。考虑到重构图像质量和空间分辨率,科研人员针对窄带光谱信号和宽带光谱信号设计了两款不同的高光谱器件(CHDNS和CHDBS)。在窄带光谱信号入射时,CHDNS的光谱分辨率为6nm,其重构的复杂窄带光谱的峰值波长误差为0.05nm,线宽误差为0.6nm。在宽带光谱信号输入时,CHDBS重构的高光谱图像的平均信号保真度高达92%。CHDBS阵列可与CMOS芯片集成,用于单次高光谱成像,有望应用于生物制药、病理分析等方面。这种计算型高光谱器件的设计为小型化和便携式高光谱设备和系统的研发开辟了新的可能。   该研究成果以“Computational hyperspectral devices based on quasi-random metasurface supercells”为题发表于Nanoscale(IF:8.307),其中论文第一作者为苏州医工所博士生陈聪和中国科学院光电所助理研究员李晓银,通讯作者为苏州医工所李辉研究员和中国科学院光电所郭迎辉研究员。   该项工作获得了中国科学院科研仪器设备研制项目(YJKYYQ20200074),国家自然科学基金(61805272, 61875253, 62141506),中国科学院C类战略性先导科技专项(XDC07040200)的资助与支持。   论文链接:https://pubs.rsc.org/en/content/articlelanding/2023/nr/d3nr00884c/unauth
  • 《苏州医工所在高灵敏增强拉曼传感技术方面取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-10
    •  高灵敏微量气体传感在环境污染研究、人体挥发性有机物(VOCs)检测中具有重要现实意义。迄今为止,已有多种分析技术被用于气体检测,但大多存在成本高、操作复杂、分析过程耗时等缺点。表面增强拉曼散射(SERS)作为一种有力的痕量分子检测工具,可利用基底的表面等离子体共振和电荷转移效应大幅增强目标分子的拉曼散射信号,具有高灵敏、简单、快捷、无损和特异指纹识别的特点,在气体传感领域具有突出的优势。   近期,中国科学院苏州医工所张志强研究员与孙姣姣博士研究生开发了一种具有超高灵敏性的三维玫瑰花枝状SERS基底(BigAuNP/Au/ZnO/P)。在本研究中,科研人员以化学生长与微纳加工相结合的方式在聚偏二氟乙烯(PVDF)膜上制备了纳米氧化锌(ZnO)-金(Au)三维异质结构。其增强原理在于相邻纳米棒表面的金纳米颗粒(AuNPs)、同一纳米棒表面的相邻AuNPs、金层与AuNPs的结合点三处“热点”区域共同提高了电磁增强效应,Au和ZnO之间的电荷转移产生高密度电荷,形成内部电场,激发了ZnO纳米棒的化学增强效应。   该SERS基底对对巯基苯甲酸(p-MBA)分子的检测限为10-13 M,其增强因子高达2.27×107,并具有良好的均一性和可重复性(RSD < 4%)。此外,PVDF膜具有多孔特性,可采用过滤式检测程序提高目标分析物与SERS“热点”的碰撞效率,有利于气体分子的高效富集。   在该工作中,科研人员以腐胺和尸胺两种挥发性有机气体为例,验证了该三维柔性SERS基底在气体传感中的检测性能。通过在SERS基底上修饰p-MBA传感单分子层,利用酰胺反应选择性地捕获腐胺和尸胺,实现了低浓度气体分子的高灵敏定量检测(腐胺检测限:1.26×10-9 M,尸胺检测限:2.5×10-9 M),比同类研究报道的检出限高出2-3个数量级,证明了该SERS传感器在实际气体传感中的应用潜力。   鉴于该三维柔性SERS基底的多孔特性和优异的增强性能,将其与微流体装置和便携式拉曼光谱仪集成,搭建SERS快速检测系统,有望实现气溶胶中细菌、病毒和污染物的高效捕获与富集,充分发挥该三维基底在气溶胶的高灵敏检测领域的技术优势。   相关研究成果以“Ultrasensitive SERS analysis of liquid and gaseous putrescine and cadaverine by a 3D-rosettelike nanostructure-decorated flexible porous substrate”为题发表于SCI一区分析类顶级期刊Analytical Chemistry(IF = 6.986)。孙姣姣博士研究生为第一作者,张志强研究员、尹焕才研究员和宋一之研究员为共同通讯作者。该研究获得国家自然科学基金委、江苏省重点研发产业前瞻项目、中国科学院科研仪器装备研制项目等项目的经费支持。   论文链接:https://pubs.acs.org/doi/abs/10.1021/acs.analchem.1c05013