《基因编辑技术取得新突破》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-05-12
  • 目前,学界公认最先进的基因编辑方法是CRISPR-Cas9,这种方法由美国麻省理工学院的华人科学家张峰等人拥有专利,能够实现对基因较为精准和高效的编辑,被认为是遗传研究领域的革命性技术。但CRISPR-Cas9也存在一些不足,例如易形成“脱靶”,即gRNA与靶DNA序列之间存在错配,向导RNA容易形成二级结构等。

    来自格氏嗜盐碱杆菌的一种Argonaute蛋白作为一种核酸内切酶,在向导DNA的引导下,能够在人体细胞中进行基因组编辑。相较于Cas9-sgRNA,NgAgo-gDNA具有更大的优势,规避了令人头痛的脱靶效应,且向导设计制作简便,可编辑基因组内任何位置,对游离于细胞核内的DNA具有更高的切割效率。

  • 原文来源:http://www.ncbi.nlm.nih.gov/pubmed/27136078
相关报告
  • 《多元自动化基因组编辑技术研究取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-03
    • CRISPR/Cas9系统极大丰富了原核生物的基因组编辑方法。但由于CRISPR/Cas9系统高效的致死筛选能力和原核生物普遍的低同源重组效率,多靶点和自动化的基因组编辑仍难以实现,严重限制了菌株的遗传改造效率。 近日,中国科学院天津工业生物技术研究所研究员郑平带领的系统与合成生物技术团队、研究员孙际宾带领的系统生物分析团队以及研究员王猛带领的高通量新分子生物合成团队合作,在重要工业平台微生物谷氨酸棒杆菌中开发了多元自动化基因组编辑方法MACBETH(Multiplex Automated Corynebacterium glutamicum Base Editing Method)。该方法结合CRISPR/Cas9系统的定位功能与胞嘧啶脱氨酶(AID)的碱基编辑功能,可在染色体靶位点实现从C到T的编辑,编辑效率高达90%。MACBETH可同时在多个基因中生成提前的终止密码子,以失活靶基因。在天津工生所的自动化平台上,可实现从质粒构建、基因组编辑、获取正确突变株和表型验证的全流程自动化操作,编辑能力可达到每月数千突变株。作为示例,MACBETH用于一次性构建94个调控因子单独失活的菌株库,成功率达到100%。由于不需要额外提供DNA模板,该方法可降低基因组编辑难度与成本,并可在不影响基因组结构的前提下,快速构建全基因组规模的单基因失活菌株库,有望加快谷氨酸棒杆菌的基础和应用研究,为将谷氨酸棒杆菌改造为通用的微生物底盘提供技术支持。同时,该方法也为在其他原核生物中实现多靶点和自动化的基因组编辑提供了参考。 相关研究成果发表在Metabolic Engineering上,助理研究员王钰、研究实习员刘叶为论文的共同第一作者。该研究得到了国家自然科学基金、中国科学院前沿科学重点研究项目、中国科学院重点部署项目、中国科学院率先行动“相关人才计划”和天津市特支计划项目的资助。
  • 《Science子刊:重大突破!首次利用CRISPR/Cas9基因组编辑系统在体内破坏癌细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-21
    • 在一项新的研究中,来自以色列特拉维夫大学等研究机构的研究人员证实CRISPR/Cas9系统在治疗转移性癌症方面非常有效,这是在寻找癌症治愈方法的道路上迈出的重要一步。他们开发出一种基于脂质纳米颗粒的新型递送系统,该递送系统专门针对癌细胞,并通过基因操纵破坏它们。这种称为CRISPR-LNP的递送系统携带一种编码Cas9的信使RNA(mRNA),其中Cas9作为分子剪刀切割细胞中的DNA。相关研究结果发表在2020年11月18日的Science Advances期刊上,论文标题为“CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy”。论文通讯作者为特拉维夫大学史姆尼斯生物医学与癌症研究学院精密纳米医学实验室研发副总裁Dan Peer教授。 Peer教授说,“这是世界上第一个证明CRISPR基因组编辑系统可以在活体动物中有效治疗癌症的研究。必须强调的是,这不是化疗。没有任何副作用,用这种方法治疗的癌细胞将永远不会再活跃起来。Cas9的分子剪刀剪断了癌细胞的DNA,从而永久地阻止了它们的复制。” 为了研究利用这种技术治疗癌症的可行性,Peer教授和他的团队选择了两种最致命的癌症:胶质母细胞瘤和转移性卵巢癌。胶质母细胞瘤是最具侵略性的脑癌类型,确诊后的预期寿命为15个月,5年生存率仅为3%。这些研究人员证明,用CRISPR-LNP进行一次治疗,胶质母细胞瘤小鼠的平均寿命就会延长一倍,总体生存率提高约30%。 卵巢癌是女性死亡的主要原因,也是女性生殖系统中最致命的癌症。大多数患者在这种疾病的晚期时被诊断出来,这时转移灶已经扩散到全身。尽管近年来取得了进展,但只有三分之一的患者能够存活下来。在转移性卵巢癌小鼠模型中使用CRISPR-LNP进行治疗,它们的总生存率提高了80%。 Peer教授说,“CRISPR基因组编辑技术能够识别和改变任何基因片段,它彻底改变了我们以个性化方式破坏、修复甚至替换基因的能力。尽管它在研究中得到了广泛的应用,但是临床实践仍处于起步阶段,这是因为需要一种有效的递送系统来安全、准确地将CRISPR递送到靶细胞中。我们开发的递送系统针对的是负责癌细胞生存的DNA。这是一种创新的治疗方法,可用于治疗目前尚无有效治疗方法的侵袭性癌症。” 这些研究人员指出,通过展示这种技术在治疗两种侵袭性癌症方面的潜力,它为治疗其他类型的癌症以及罕见的遗传疾病和慢性病毒性疾病(如艾滋病)提供了许多新的可能性。 Peer教授说,“我们如今打算继续针对遗传学上非常有趣的血癌以及杜氏肌肉萎缩症等遗传性疾病开展实验。新的治疗方法可能还需要一段时间才能用于人类,但我们是乐观的。基于mRNA的分子药物正在蓬勃发展---事实上,目前正在开发的大多数COVID-19疫苗都是基于这一原理。12年前,当我们第一次谈到用mRNA进行治疗时,人们认为这是科幻小说。我相信在不久的将来,我们会看到许多基于mRNA的个性化治疗方法---无论是针对癌症还是针对遗传性疾病。通过特拉维夫大学的技术转让公司Ramot,我们已经在与国际企业和基金会进行谈判,旨在将基因编辑的好处带给人类患者。”