学科新兴主题识别是及时发现科技创新发展动态、追踪学科发展趋势的有效方法。学科新兴主题的涌现是一个复杂的过程,不仅受科学交流过程的影响还受网络自组织过程的影响。学科新兴主题的网络结构在一定程度上嵌入了其特有性质。本文在常见科学交流属性特征的基础上,融合学科主题在网络中的全局和局部网络结构特征,通过随机匹配生成标准实验数据集,先后运用多指标加权融合方法与机器学习分类方法识别学科新兴主题。研究结果表明,多指标加权融合方法对识别影响力排序靠前的学科主题表现较好。但是,高影响力主题仅占60%,低于随机森林分类识别模型的最优性能64.14%,这表明机器学习分类识别方法在拟合复杂过程方面具有优势,而多指标加权融合方法更适用于关注顶尖影响力主题的任务。机器学习可解释分析结果表明,吸纳引用频次较多、网络影响力较高、论文发表较多、关注作者影响力与期刊影响力较强对高影响力主题识别起正向作用;与之相反,结构突变程度高对学科新兴主题识别有负向作用。