《中国科大石墨烯磁性调控研究获进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-04-01
  • 近日,中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂的策略,实现了二维石墨烯的室温铁磁性。研究在共掺杂N原子的辅助下,将Co原子稳定的锚定在石墨烯晶格中,从而在石墨烯中激活了室温本征铁磁性。相关研究成果以Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism为题,发表在《自然-通讯》上。

    石墨烯由于高载流子迁移率、长自旋扩散长度和弱自旋轨道耦合等优良性质,被认为是下一代自旋电子学应用中极具前景的材料。如何在本征抗磁的石墨烯中诱导出稳定的室温铁磁性,是石墨烯基自旋电子学器件制备面临的首要问题之一。目前,研究人员已尝试多种途径来实现石墨烯中的铁磁有序(包括利用空位缺陷、sp3功能化、化学掺杂、表面吸附和构造边缘态等),但获得的磁矩往往相对较弱且不稳定,铁磁有序无法在室温下维持。

    研究组基于以往二维过渡金属硫属化合物的磁性调控研究经验(Nature Communications, 10, 1584;Angewandte Chemie International Edition, 60, 7251)和DFT材料模拟设计,认为精确可控的磁性过渡金属(Fe、Co、Ni等)掺杂是解决这一问题的有效方案。为了克服将过渡金属原子嵌入石墨烯晶格的巨大势垒,研究组采用Pauling电负性高于C元素(2.5)的N元素(3.5)进行共掺杂,利用N原子构造锚定位点,将Co原子牢固的束缚在石墨烯晶格中,从而提供稳定的局域磁矩,并通过Co-N-C之间的轨道杂化形成铁磁交换作用,最终实现石墨烯的室温铁磁性(图1)。

    研究组利用两步浸渍-热解的方法,在N原子辅助下,将Co原子单分散掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu g-1,居里温度达到400 K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法(实空间多重散射理论计算、扩展边定量拟合、多组态计算和小波变换),研究证实了样品中的Co是以平面四边形CoN4结构单元原子级分散于石墨烯晶格中,排除了磁性起源于Co相关第二相的可能。DFT电子结构计算进一步表明,CoN4-石墨烯体系具有金属性的能带构造,存在Fermi面处态密度显著增强(根据Stoner判据,确保室温铁磁性),Co-3d和C/N-2p轨道杂化,以及π电子自旋极化,表明CoN4-石墨烯体系中的室温铁磁性起源于传导电子中介的类RKKY长程铁磁交换机制,Co-N4结构单元是室温铁磁性的主要来源。

    研究工作得到国家自然科学基金、合肥大科学中心高端用户培育基金和中国博士后科学基金等的资助。

    图1.精确可控的Co原子掺杂激活石墨烯室温铁磁性

    图2.同步辐射X射线谱学和常规表征证实Co原子以CoN4分散于石墨烯晶格中

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《磁性金属原子精确可控掺杂策略 实现二维石墨烯室温铁磁性》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-04-01
    • 3月29日,科技日报记者从中国科学技术大学获悉,该校国家同步辐射实验室闫文盛教授研究组与孙治湖副研究员合作,通过磁性金属原子精确可控掺杂的策略,实现了二维石墨烯的室温铁磁性。研究成果日前发表在《自然·通讯》上。   石墨烯由于高载流子迁移率、长自旋扩散长度和弱自旋轨道耦合等优良性质,被认为是下一代自旋电子学应用中极具前景的材料。如何在本征抗磁的石墨烯中诱导出稳定的室温铁磁性,是石墨烯基自旋电子学器件制备面临的首要问题之一。   科研人员基于以往二维过渡金属硫属化合物的磁性调控研究经验和DFT材料模拟设计,认为精确可控的磁性过渡金属(铁、钴、镍等)掺杂是解决这一问题的有效方案。为了克服将过渡金属原子嵌入石墨烯晶格的巨大势垒,研究组利用氮原子构造锚定位点,将钴原子牢固地束缚在石墨烯晶格中,从而提供稳定的局域磁矩,并通过钴—氮—碳之间的轨道杂化形成铁磁交换作用,最终实现石墨烯的室温铁磁性。
  • 《半导体所二维半导体的磁性掺杂研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-21
    • 近年来,二维范德华材料例如石墨烯、二硫化钼等由于其独特的结构、物理特性和光电性能而被广泛研究。在二维材料的研究领域中,磁性二维材料具有更丰富的物理图像,并在未来的自旋电子学中有重要的潜在应用,越来越受到人们的关注。掺杂是实现二维半导体能带工程的重要手段,如果在二维半导体材料中掺杂磁性原子,则这些材料可能在保持原有半导体光电特性的同时具有磁性。近日,中国科学院半导体研究所半导体超晶格国家重点实验研究员魏钟鸣、李京波带领的科研团队,在铁掺杂二维硫化锡(Fe-SnS2)晶体的光、电和磁性研究方面取得新进展。   硫化锡(SnS2)是一种光电性能优异的二维范德华半导体材料,也是目前报道的光电响应时间最快的二维半导体材料之一。该材料无毒、环境友好,含量较丰富而且易于制备。该研究团队通过用传统的化学气相输运法摸索生长条件,获得不同掺杂浓度的高质量的Fe-SnS2单晶,然后通过机械剥离法获得二维Fe-SnS2纳米片。扫描透射电子显微镜(STEM)结果表明,Fe原子是替位掺杂在Sn原子的位置,并且均匀分布。通过生长条件的调控,结合X射线光电子能谱(XPS)分析,可以获得一系列不同的晶体,铁的掺杂浓度分别为2.1%、1.5%、1.1%。单层Fe0.021Sn0.979S2的场效应晶体管测试表明该材料是n型,开关比超过106,同时迁移率为8.15cm2V-1s-1,光响应度为206mAW-1,显示了良好的光电性能。   单晶片磁性测试表明,SnS2是抗磁性的,Fe0.021Sn0.979S2和Fe0.015Sn0.985S2具有铁磁性,而Fe0.011Sn0.989S2则显示出顺磁性。实验测得Fe0.021Sn0.979S2的居里温度为31K。当温度为2K,外磁场沿垂直c轴和平行c轴方向时可以获得不一样的磁性,即强烈的磁各向异性。理论计算表明,Fe-SnS2的磁性来源于Fe原子与相邻S原子的反铁磁耦合,而相邻Fe原子间是铁磁耦合,这样在这种磁性原子掺杂材料中就形成了长程铁磁性。该研究表明铁掺杂硫化锡在未来的纳米电子学、磁学和光电领域有潜在的应用。   相关研究成果发表在Nature Communications上。研究工作得到中国科学院“相关人才计划”和国家自然科学基金委相关人才计划、面上项目的资助。