《OnRobot推出视觉系统"Eyes",实现视觉引导机器人》

  • 来源专题:数控机床——前沿技术
  • 编译者: icad
  • 发布时间:2020-07-08
  • OnRobot今日发布全新2.5D视觉系统"Eyes"。机器人手臂经常执行拾取位置、形状、大小不同物品的任务。制造商常常通过添加固定装置、进给器和其他硬件来提供一致的定位,然而这些固化应用增加了成本及复杂性,且无法轻松拾取不同物体或是实现短时间快速转换。

    与市场上的其他视觉系统不同,Eyes只需要拍摄一张图像即可进行校准和零件识别,并且具有自动对焦功能,可以在同一应用程序中的不同距离工作。

    Eyes可用于对各种物体进行分类,同时也适用于对由外形定义的金属零件进行加工的CNC数控机床,以及许多强调位置朝向的拾取和放置应用。Eyes还具备实惠且易于部署的2.5D视觉,提供深度感知。与2D相比,它不仅增加了特定零件的长度和宽度,而且还增加了特定零件的高度信息。

    新的视觉系统可直接与其他OnRobot设备相连接,使Eyes与任何OnRobot夹持器都易于一起使用。通过双重设置和双重快换装置,Eyes可以自动配置夹持器的工具中心点(TCP),从而避免了来自不同工具供应商的不同软件包之间的潜在冲突。最佳安装取决于应用。将Eyes安装在外部的优势之一是,不必担心电缆与机器人并排运行以及优化周期时长,因为Eyes可以在机器人执行其他操作时拍照并对其进行处理。

相关报告
  • 《机器视觉系统提高了机器人工作效率》

    • 来源专题:数控机床——前沿技术
    • 编译者:杨芳
    • 发布时间:2015-11-04
    • 速度快、识别率高、精度高,极大提高了电子电气行业的生产效率。这款机器人就是佛山市固高自动化技术有限公司参加中国创新创业大赛(广东赛区)先进制造组决赛的秘密武器。它配备视觉系统,可自动拾取工件,向空板内插件,从而替代大部分人工。   速度快、识别率高、精度高,极大提高了电子电气行业的生产效率。这款机器人就是佛山市固高自动化技术有限公司参加中国创新创业大赛(广东赛区)先进制造组决赛的秘密武器。它配备视觉系统,可自动拾取工件,向空板内插件,从而替代大部分人工。   插件实现机器化生产      “目前国内还没有成熟的类似产品,企业只能到国外购买,但是国外售价大多在七八十万元,而我们研发的这款产品市场价格仅为二三十万元,不仅极大降低了企业的成本,而且售后服务也更为便利。”胡国强介绍,“异形电子插件机器人”可将人从简单重复的工序中解放出来。不过,目前这款插件机器人还在进一步测试完善阶段,量产或需等到明年。   图片来源于百度图片   从去年4月成立至今,固高已经投入了研发资金300多万元。而支持固高如此大手笔投入的原因就是市场的巨大需求。   “传统产业转型升级等发展契机使得佛山这座制造业大市,在运动控制系方案和精密机械装备方面有着强大的需求。很多企业希望对原来落后的产能设备重新设计升级,同时期待引入高效率、高精度的智能装备。”胡国强表示,南海企业这样强大的市场需求正是固高选址落户南海的重要原因,“固高做的正是这样的事情,帮助企业淘汰落后产能,实现转型升级。”   不过,胡国强也坦言,有强烈的转型意识并付诸行动进行技改的企业多是大企业,中小企业虽有需求却因改造成本高而陷入有心无力的困境。除了靠政府的支持,令企业转型的技术更成熟,进一步降低提升改造成本也是重要手段。   产学研合作提供人才      “去年,我们从深圳带了四五个人才过来,一年下来,我们现在已经是拥有20多人的团队。其中有一半员工来自广工大。”胡国强表示,这一切都得益于南海区广工大数控装备协同创新研究院(简称“广工大研究院”)强大科研资源的支持。   除了推荐大量的广工大学生到公司实习,胡国强透露,广工大的科研团队还会将其科研课题放在固高进行实验和预演,不断利用科研项目锻炼学生,培养研发型企业的核心人才。“我们的产品研发时间特别长,但人才培养的速度慢,又缺乏真正的研发高手,用工找人难,留人就更难。”胡国强指出,广工大研究院在很大程度上解决了固高人才引进的难题。由此,固高和广工大研究院不断加强合作,培养人才,加大研发力度。“耐得住寂寞才能研发出真正创新的产品。”胡国强说。   有了强大的科研团队,这一年多来,固高不断与南海企业开展合作,为企业设计高速、高精度运动控制产品及其成套系统,以及进行精密装备的设计、制造、营销以及技术服务。
  • 《基于视觉定位的机器人搬运技术及应用》

    • 来源专题:数控机床——前沿技术
    • 编译者:杨芳
    • 发布时间:2016-05-18
    •   田鑫,施成章,朱学军   (宁夏大学 机械工程学院,宁夏 银川 750021)   摘要:机器人通过视觉对工件位置信息进行分析处理,完成相应搬运任务已成为机器人应用的主要发展方向。本文主要针对立体仓储系统中基于视觉定位的物料搬运应用进行研究。系统中采用智能相机Vision Hawk对目标进行视觉定位,运用摄像机标定技术实现相机—机器人坐标系的标定,通过控制软件Workvisual来完成机器人的运动控制和轨迹规划,进而实现机器人对多种类型工件的识别、定位及搬运。   关键词:视觉定位;搬运;摄像机标定;运动控制 0引言   近年来,视觉引导与定位技术已经成为工业机器人获得环境信息的主要手段,它可以实现工业机器人在实际应用中的自主判断能力,使机器人应用的灵活性和工作质量大大提高。随着机器人技术的飞速发展,机器视觉系统这一新兴技术也进入到日常的生产应用当中。机器人视觉广泛应用于工业领域,主要集中在电子行业、半导体行业、航天、测量等行业,并取得了很多成就。目前视觉应用已经发展得相当成熟,许多工业生产线上都已经投入使用[1]。主要应用如破损检测、条形码读取、位置检测等。视觉还可分为单目视觉和双目视觉,单目视觉就是对二维平面进行视觉检测,这样对于立体空间的检测就受到限制;而双目视觉则是对立体三维空间的检测,因此应用范围更加广泛。本文中的应用主要是在平面内的检测,因此单目视觉就能够满足需要[2]。   智能化立体仓储系统的结构组成有立体存取仓库、AGV小车、基于视觉搬运机械手等几部分,这里主要对基于视觉的机械手搬运应用进行研究。采用视觉定位机器人对七巧板(模拟需要搬运的工件)进行拆分和组合,本文将对这一部分的应用做一些简单的说明。 1结构组成   图1可视化搬运系统组成如图1所示,视觉搬运系统是由机器手臂、控制柜、智能相机、吸盘、拆分台、运输台、组合台几部分组成。其中,机械手为KUKA机械手,摄像头采用VisionHawk智能相机,两者相互组合形成机器人可视化系统,用来完成工件的定位和搬运,保证在搬运过程中,机器人吸盘能够准确吸取工件[34]。 2视觉定位原理   2.1视觉工作流程   KUKA机械手与Vision Hawk智能相机组成可视化搬运系统,其工作基本流程如下[5]:(1)系统开始运行,通过相机进行图像采集;(2)利用应用软件Visionscape对目标图像进行对比分析和处理;(3)通过像素网格划分对目标图像的具体位置进行定位运算;(4)将所得图像坐标利用Visionscape软件进行转换运算,即图像坐标系到世界坐标系的转换,实现对七巧板所在实际位置的坐标数据的输出。   2.2摄像机标定方法   计算机视觉的基本任务之一是从摄像机获取的图像信息出发计算空间物体的几何信息,并由此重建和识别物体。空间物体表面某点的几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在大多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为摄像机标定[6]。   通过摄像机标定,可以实现空间中各个坐标系之间的相互转换,从而得到所采集目标图像在实际空间中的坐标,实现视觉定位。下面将简单对摄像机标定方法进行说明。   在视觉系统中,常用到的坐标系有相机坐标系Oc—XcYcZc;世界坐标系Ow—XwYwZw;图像坐标系,包括图像物理坐标系o—xy和图像像素坐标系o—uv。坐标系之间存在相对应的关系,需要通过计算来实现坐标的转换,从而实现灵活、准确地定位,进而实现对目标工件的吸取。   而通过摄像机标定技术可实现图像、相机、世界坐标系的转换[78]。其转换计算关系如下:   世界坐标系中一点P(Xw,Yw,Zw),(u,v)是P点的成像点p的实际图像像素坐标,单位是像素数(pixel),f为焦距。P在图像上的成像位置p的几何关系如式(1)所示:      其中, (Xc,Yc,Zc)是P点在摄像机坐标系中的坐标。(xu,yu)是p点的物理图像坐标,单位为mm。   图像坐标中图像像素坐标与图像物理坐标之间的关系如式(2)所示:      其中,sx,sy为图像平面单位距离上的像素数(pixels/mm),(u0,v0)为摄像机与图像平面的交点,称为主点坐标。由式(1)、(2)可得:      其中,fu=fsx,fv=fsy,fu称为图像u轴的尺度因子,fv称为图像v轴的尺度因子。   令p为规一化的理想图像坐标,即相当于假设摄像机焦距等于1,其中x=Xc/Zc,y=Yc/Zc,则有:      则图像点的像素坐标m与规一化坐标p之间的关系以齐次坐标表示为:      其中,K包含5个内参数,它反映的是摄像机内部的成像参数,所以称为内参数矩阵。   可以得到世界坐标系与摄像机坐标系的转换关系为:      其中,R和T分别为从世界坐标系到摄像机坐标系的旋转和平移变换。由式(5)、(6)可得空间点的实际坐标与像素坐标之间的关系为:      其中M为3×4矩阵,称为透视变换矩阵,M1只与摄像机内部结构有关,称为摄像机内部参数;M2只与摄像机对于世界坐标系的方位有关,称为摄像机外部参数。X为空间点在世界坐标系下的齐次坐标。   以上换算过程是通过Visionscape软件设置完成的,通过进行相应的设置,实现采集图像与目标图像的分析对比及坐标的转换,并将运算坐标结果传送至机械手,从而实现对工件的准确定位、吸取和搬运[9]。 3搬运工作流程   AGV将出库的托盘运送至拆分台后,根据上位机发出的拆分指令,机械手将托盘上的七巧板拆分并依次放置在输送台的传送带上,这里每放置一个,放置位传感器接收信号,步进电机就向前运动一段固定的距离,直到七巧板全部拆分完成,停止动作待命。而后根据上位机发送的组合指令,将传送带上的七巧板按照上位机事先预设的图形在组合台上进行摆放,这里从输送台上取走工件,每取走一个,提取位传感器接收信号,步进电机就向前运动一段固定的距离,直到七个工件全部提取完成,停下等待指令。   在执行操作前需要通过上位机对其搬运效果图形进行选择设定,设定完成后运行图2预设图形,视觉搬运系统将会按照上位机发出的预设图形进行拆分组合,其预设图形如图2所示。   使用KUKA机械手完成吸取和搬运,通过WorkVisual控制软件编程实现搬运的运动控制和轨迹规划,其基本流程如下图3所示。   最终实现的搬运效果如图4所示,这里只是预设7种图案中的一种搬运效果。前者为搬运操作前的状态,后者为搬运完成后的状态。   4结论   如今越来越多基于视觉应用的机器人进入到生产工作中,而其中基于视觉的搬运机器人是视觉应用的主要研究方向之一。本文研究的是一种基于单目相机的视觉搬运系统,利用坐标系标定方法实现图像和空间坐标系之间的相互转换,快速准确地得到目标的坐标数据,实现在空间中对工件的视觉识别定位及搬运。系统可以应用于高重复性的生产工作中,降低人工及工装成本,使得自动化生产更具柔性以及智能化。目前这种基于视觉的搬运系统已在实际工业现场中得到应用。 参考文献   [1] MALASSIOTIS S, STRINTZIS M G. Stereo vision system for precision dimensional inspection of 3D holes[J].Machine Vision and Applications,2003, 15(2):101113.   [2] 刘子豪,樊留群. 工件的视觉定位及机器人控制的应用研究[J]. 机电产品开发与创新, 2014,27(6):46,9.   [3] 李金义,杨成,王京.基于视觉定位的机器人搬运系统[J]. 制造业自动化, 2011,33(2):4142.   [4] 刘振宇,李中生,冯柏润,等.机器视觉在工业生产线上的应用实现[J].微型机与应用,2013,32(17):2730.   [5] 潘武.基于机器视觉的工件的识别和定位[D]. 北京:北京化工大学, 2012.   [6] 夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程, 2014,31(6):697701.   [7] 舒娜.摄像机标定方法的研究[D]. 南京:南京理工大学, 2014.   [8] 贾丹.摄像机现场标定算法研究[D]. 哈尔滨:哈尔滨工程大学, 2007.   [9] 朱海波.基于视觉引导的工业机器人工件搬运技术研究[D]. 沈阳:沈阳工业大学, 2013.