《韩国标准科学研究院开发出高性能非贵金属电解催化剂,有望大幅降低制氢成本》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2024-11-11
  • 转自全球技术地图

    据FuelCellChina 10月16日消息,韩国标准科学研究院(KRISS)开发出一种高性能非贵金属催化剂,可用于阴离子交换膜(AEM)电解,有望大幅降低氢气生产成本,推动氢能源的广泛应用。KRISS的研究人员将纳米级的钌颗粒均匀覆盖在氧化钼表面,抑制氧化钼降解,显著提升了催化剂的耐久性。由此开发出的新型催化剂表现出优异的性能,其耐久性是传统商业催化剂的4倍以上,活性提高了6倍,且还具有很强的通用性,不仅适用于淡水电解,还可用于海水电解。此外,当新型催化剂与钙钛矿-硅串联太阳能电池搭配使用时,太阳能-氢能转换效率高达22.8%,显示出在可再生能源领域的巨大潜力。相关研究成果发表在《Applied Catalysis B: Environmental and Energy》期刊。

  • 原文来源:https://mp.weixin.qq.com/s/eEvpv8s2F-lPLfWwPnqF7Q
相关报告
  • 《新型催化剂可将制氢成本降低80%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-14
    • 13日,记者从浙江大学获悉,该校化学工程与生物工程学院侯阳研究员,通过将高度分散的镍单原子锚定在氮—硫掺杂的多孔纳米碳基底,设计开发出了一种单原子OER催化剂,能使电/光电催化水裂解析氧反应更加高效,从而提升氢气制备的效率。这种新型催化剂可降低80%的制氢成本,并大幅提升OER反应的稳定性。该成果已被知名学术期刊《自然通讯》在线报道。 通过水裂解产生氧气,进而形成氢气,是最常见的氢气制备方法,其产生的电/光电催化析氧反应(OER),会限制整体的能量转换效率。此前有科研人员研究出了金属铱作为催化剂来提升反应效率,但其价格十分昂贵。因此,研制出既保证催化效果又价格低廉的替代品,成了学界面临的难题。 侯阳课题组通过仿生学方法,从材料的原子结构开始剖析。他们发现叶绿体中存在一种金属——氮配位卟啉结构,可收集太阳能,利用光合作用氧化反应分解水,并释放出氧气。侯阳介绍,他们还通过分析发现了镍—氮配位掺杂的碳材料。 “在这一特殊结构中,四个氮原子‘拉着’金属镍原子,吸引氢氧根离子吸附,降低了各种中间环节的转换难度,进而加速氧气析出。”侯阳称,课题组创新性地用一个硫单原子替换了一个氮原子,进一步优化材料表面的电荷分布,同时采用特殊工艺,将镍—氮材料“锚定”在碳基底上,规避了材料的不稳定性,最终使这种新型催化剂电极在碱性条件下表现出优异的电催化水裂解析氧活性和稳定性。 “OER析氧反应是水裂解器件和金属—空气电池的核心过程”。侯阳表示,这项成果或将助力新一代氢能汽车大规模降低燃料成本。
  • 《韩国标准科学研究院(KRISS)研究团队开发出量子级精度的长度测量系统》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-07-16
    • 近日,韩国标准科学研究院(KRISS)研究团队成功研发出具备量子物理学极限精度的长度测量系统。该系统不仅具备世界最高水平的精度,还能在户外环境中便捷运行,有望成为下一代长度测量的"基准"。 目前最精确的长度测量设备是作为1米(m)基准的"长度测量标准器"。由KRISS等世界各国计量标准代表机构运营的长度测量标准器,采用短波长激光干涉仪进行长度测量。短波长激光如同刻度密集的尺子,其波长分布极其均匀,可实现1~10纳米(纳米,十亿分之一米)级别的高精度测量。注:干涉仪(Interferometer):通过分析两束光相遇时产生的干涉图案(即两束光路径的相对变化),来精确测量目标物体距离或位移的装置。 然而,长度测量标准器的单次测量范围极为有限。这是由于短波长激光的光谱范围较窄所致——好比刻度密集却总长很短的尺子。若要测量超出激光波长范围的长度,就必须反复进行多次测量并累加结果。这不仅导致测量耗时冗长,还需配备稳定移动干涉仪的装置,存在显著的时空局限性。 相比之下,绝对长度测量系统虽精度稍逊,却能实现长距离单次测量。该系统通常从基准点向目标发射光脉冲,通过计算光波往返时间确定长度。其测量方式相对简单,设备可小型化,并能快速完成远距离测量,因而被广泛应用于工业现场。但现有绝对长度测量系统的精度极限仅为微米级(微米,百万分之一米),原因在于以现有技术难以将光传播时间测量精度提升至特定极限值以下。 KRISS长度形状测量团队成功利用"光学频率梳干涉仪",将绝对长度测量系统的精度提升至长度测量标准器的水平。研究团队创新性地将光学频率梳干涉仪应用于绝对长度测量系统。光学频率梳如同钢琴键盘般,由数千个等间距频率的光束组成。与传统干涉仪光源不同,光学频率梳兼具宽波长范围和高度均匀的波长分布特性,既能实现长距离单次测量,又能保证超高精度。 研究团队开发的"基于光学频率梳光谱干涉仪的绝对长度测量系统",兼具长度测量标准器的精度与绝对长度测量系统的便捷性。该系统精度达0.34纳米,不仅是现有设备的最高水平,更达到了量子物理学允许的极限精度。其25微秒(微秒,百万分之一秒)的测量速度,使系统具备足以在户外环境快速运行的便携性,有望显著提升韩国高端工业领域的长度测量精度水平。 研究团队计划持续推进后续研究,包括评估设备的测量不确定度、持续改进性能等,以期将本次开发的系统认证为下一代长度测量标准器。 KRISS长度形状测量组首席研究员表示:"AI半导体、量子技术等未来产业的竞争力,取决于能否精确测量和控制纳米级距离。此次成果将成为韩国跃升为下一代长度标准制定领军国家的重要契机。" 本次研究成果获得KRISS基础研究项目的支持,并已发表于光学领域国际顶级期刊《Laser & Photonics Reviews》(影响因子:10.0)六月刊(DOI:10.1002/lpor.202401995)。