《华南理工大学自修复海洋防污涂料取得新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: mall
  • 发布时间:2017-08-17
  • 海洋生物污损是海洋资源开发与利用中遇到的一个国际性难题,也是制约海洋经济发展和维护海防安全的技术瓶颈之一。使用杀生型防污涂料(Antifouling Coatings)和污损脱附型防污涂料(Fouling Release Coatings)是目前主要的污损防护技术。杀生型防污涂料主要依赖防污剂的释放实现防污目的,目前作为防污涂料主导产品,占据90-95%的份额。然而,随着人们对海洋环境保护的日益关注和环保法规的日益严格,污损脱附型防污涂料成为研究的热点。有机硅材料如聚二甲基硅氧烷(PDMS)因具有低表面能和低弹性模量等特性,污损生物不易附着或附着不牢,可以通过材料表面物理作用达到防污目的,同时材料表面光滑降阻,是最有前景的污损脱附型防污涂层。然后,有机硅材料与基底的粘附强度较弱、机械性能差,在服役条件下容易剥落或损坏,而其本身又是具有共价键的交联网状结构,损坏后难以修复。同时,有机硅材料对航行速度依赖性强。它对于高速行驶的船只(>15海里/小时)有效,对停航期较长、低速船舶以及静态条件下使用的海洋设施防污效果不佳。这些极大的限制了其在海洋防污领域的拓展应用。

      华南理工大学海洋工程材料团队长期围绕环境友好海洋防污材料开展工作。除了生物降解高分子基防污材料外,还一直致力于开发多功能有机硅防污材料。该团队在先前的工作中,设计了一类新型的有机硅聚脲材料。由于有机硅与聚脲之间溶度参数的差异,在成膜过程中发生自分层,从而形成表面有机硅PDMS富集层,其低表面能特性赋予该材料优异的污损脱附性能,而脲基之间以及脲基与基底之间形成强氢键,赋予涂层较高的力学性能和粘附力。海洋实验表明该材料具有良好的污损释放性能(Ind.Eng.Chem.Res.,2016,55,6671)。为提高有机硅材料在静态条件的防污能力,他们将有机小分子防污剂三氯苯基马来酰亚胺接枝到有机硅基聚氨酯上,使材料的低表面能和防污剂分子的抗污特性相结合,从而实现协同防污。该体系在海洋环境下不释放防污剂,因而对海洋环境几乎无影响。另外,聚氨酯中的氢键将有效提高材料的力学性能和粘附力。室内和海洋实验表明该材料具有优秀的抗细菌、硅藻和藤壶幼虫的能力,同时疏水性的防污剂使PDMS低表面能的特性得以保证,双重功能作用赋予材料优异的实海防污性能(ACS Appl.Mater.Interfaces,2015,7,21030)。

      最近,针对有机硅防污材料破损后不易修复、静态防污效果差等问题,他们通过分子设计制备了一种可重涂、自修复的有机硅聚脲材料。该体系除了具备自分层特性保留有机硅的低表面能和低弹性模量外,由于聚合物中连接柔性聚二甲基硅氧烷链段之间的脲基单元形成的强氢键作用,可以发生可逆的物理交联,因此,该材料在海水或空气中均表现出优异的室温自修复能力(图1,2)。特别是,虽然该材料在海洋环境中不可降解或水解,却可用于环境友好防污剂(DCOIT)的控释载体。该自修复材料与防污剂构成的体系可以使DCOIT呈线性可控释放,在实海中具有优异的静态防污性能(图3)。同时,该体系还具有良好的基底粘附性能,损伤后可自修复。相关工作发表在英国皇家化学会学术期刊Journal of Materials Chemistry A上(J.Mater.Chem.A,2017,5,15855),并申请中国发明专利。该系列工作得到国家自然科学基金的资助。

相关报告
  • 《华南理工大学王海辉教授课题组在锂离子电池固态电解质膜研究方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-18
    • 全固态锂电池因其高的能量密度和高的安全性一直受到研发机构和电池市场的高度关注。全固态锂电池所使用的金属锂负极具有3870 mAh/g的理论比容量,远高于目前广泛使用的商业材料石墨(372 mAh/g)。但是,锂金属负极使用的先决条件是确保电池的安全性。无机固态电解质的应用能有效避免固态电解质界面膜(SEI膜)的形成和锂枝晶刺穿等不利于安全性的因素。无机固态电解质应用于全固态锂电池中仍面临两大难题:1、长的锂离子迁移路径造成电解质内部大的阻抗;2、刚性的电解质与电极材料之间大的界面阻抗。降低电解质的厚度和界面阻抗是开发高性能全固态锂电池的关键。 近日,华南理工大学王海辉教授课题组采用相转化法成功构筑了具有非对称结构的钙钛矿固态电解质。固态电解质的制备过程如下:通过纱网作为孔的模板,浆料之上的促凝剂水和浆料中的溶剂N-甲基吡咯烷酮在浓度梯度的推动力下进行上下对流,从而在浆料中形成垂直有序的微孔道结构,经水促凝后浆料硬化得到具有垂直有序孔道的前驱体膜,再经过高温烧结得到垂直孔道结构保持的非对称固态电解质。这种陶瓷固态电解质一侧具有200 μm的超薄致密层,另一侧具有垂直有序微孔道结构(孔径~113 μm)。薄的致密层厚度可以降低离子传输引起的内部阻抗。具有垂直有序微孔道结构的一侧可有效增大与正极材料的接触面积,使得电解质与正极的面积比阻抗由853 Ω·cm2降低至133 Ω·cm2。这种钙钛矿电解质在应用于全固态锂电池中表现出优异的电化学性能。采用这种固态电解质的全固态锂电池在0.05 C的电流密度下进行恒电流充放电测试具有127 mAh/g的高比容量,充放电循环50圈后容量保持率高达98%,电池的倍率性能也得到显著提升。该工艺流程成本低,易于大规模生产,对全固态锂电池的进一步发展起到了重要的推动作用。 " 这一成果近期发表在Advanced Energy Materials上(DOI: 10.1002/aenm.201801433),文章的第一作者为华南理工大学博士研究生蒋周阳,通讯作者是华南理工大学的王素清研究员和王海辉教授。该研究受到了国家自然科学基金、国家重点研发计划及广东省杰出青年自然科学基金等项目的资助。
  • 《突破 | 华南理工大学选区激光熔化NiTi形状记忆合金研究进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-26
    • 由于NiTi形状记忆合金(SMAs)具有高反应敏感性和低热导率等物性,导致其初步成形件的后续加工十分困难,作为一种典型的金属增材制造技术,选区激光熔化(SLM)增材制造技术在近净成形复杂几何形状的金属构件方面具有显著优越性,能够有效解决NiTi SMAs冷加工难、加工成本高的问题。为实现SLM NiTi SMAs的工程应用,需厘清其工艺参数-微观结构-功能特性的内在联系,揭示其相转变行为与功能特性变化的机理,建立坚实的理论基础。 基于此,华南理工大学杨超教授团队在《金属学报》期刊发表的《选区激光熔化NiTi形状记忆合金研究进展》一文中重点对选区激光熔化(SLM)增材制造NiTi SMAs的成形性、相转变行为、微观结构、力学性能和热机械性能的相关研究结果进行了分析与总结。同时,对近来SLM多孔NiTi SMAs的设计及其生物相容性的探索研究进行了阐述。最后,展望了SLM NiTi SMAs研究过程中需要重点突破的问题。 NiTi、不锈钢和人体组织的性能对比图;多孔结构的模型图以及SLM制备的多孔NiTi SMAs 总结与展望 目前,针对SLM NiTi SMAs已经得到了较为系统的研究,关于SLM NiTi SMAs成形性的研究表明,低功率结合低速率以及高功率结合高速率是目前普遍采用的工艺参数;SLM NiTi SMAs相转变行为的调控则主要归因于基体中Ni原子含量的变化和热处理过程中沉淀相的析出与分布等,同时,成形过程中残余热应力的存在以及基体中元素分布不均匀的现象也会影响SLM NiTi SMAs的相转变行为;对于SLM NiTi SMAs的微观结构而言,大量柱状晶以及不均匀结构的存在会导致SLM NiTi SMAs功能各向异性的出现,后续热处理工艺能够有效消除这种各向异性并改善其功能特性;SLM NiTi SMAs的生物相容性正逐步成为研究热点,多孔结构设计的多样性、表面改性处理的可控性等为其在生物医用领域的应用提供了更多可能。根据国内外研究现状和发展趋势,为进一步促进SLM NiTi SMAs的发展,需要从以下几方面重点突破。 (1) SLM NiTi SMAs的拉伸超弹性研究。SLM NiTi SMAs中结构缺陷(如微裂纹、孔隙等)的存在导致目前研究以压缩变形为主,对SLM NiTi SMAs的拉伸超弹性研究相对较少,而NiTi SMAs在服役过程中普遍存在拉伸变形,因此SLM NiTi SMAs的拉伸超弹性有待深入研究。同时,对比也可以发现SLM NiTi SMAs相对传统轧制+时效NiTi SMAs的超弹性有待进一步提高,因此探索提高SLM NiTi SMAs的回复应变和形状回复稳定性的途径是实现其工业化应用的必要条件。 (2) SLM NiTi SMAs的双程形状记忆效应研究。双程形状记忆效应不是NiTi SMAs的固有属性,需要经过适当的冷变形(马氏体或奥氏体状态的过量变形)、热机械循环训练和约束时效等途径获得。从工程应用的角度讲,理想的双程形状记忆效应训练工艺应该具有应变大、稳定性好和相变温度变化小等特点。研究如何在SLM NiTi SMAs中获得稳定的双程形状记忆效应,实现其在智能机器人、复杂驱动装置与执行元器件等领域对复杂驱动元件的创新应用,是拓展复杂SLM NiTi构件应用的重要发展方向。 (3) SLM NiTi SMAs结构疲劳和功能疲劳的性能评价。目前关于SLM NiTi SMAs结构疲劳和功能疲劳的性能评价研究尚存在较大空白。在循环拉伸或压缩过程中,SLM NiTi SMAs会逐步出现结构疲劳和功能疲劳,2者存在紧密联系,也表现出显著区别。结构疲劳或者功能疲劳出现时,会破坏SLM NiTi SMAs的服役效果。SLM NiTi SMAs在循环拉伸或压缩过程中,基体位错的产生与积累、微裂纹的形成与扩展等会逐步导致其结构疲劳的出现;同时,在循环拉伸或压缩过程中,或者升温降温过程中,SLM NiTi SMAs在发生相转变的过程中,由于界面的不兼容性,会在马氏体与奥氏体的界面处形成少量的位错,这些位错的逐步积累会导致马氏体相变温度、相变滞后等功能特性发生衰减,最终导致功能疲劳的出现。在结构疲劳出现的过程中,会导致功能疲劳;功能疲劳形成的过程中,也会导致结构疲劳。如何使得结构疲劳和功能疲劳达到均衡状态,是SLM NiTi SMAs面临和亟需解决的关键问题之一。 (4) 各向同性的SLM NiTi SMAs的制备与研究。由于SLM过程中的快速熔化与凝固、复杂热历史等,SLM NiTi SMAs的微观结构与传统工艺得到的NiTi合金存在明显区别。SLM过程中,方向性的散热与凝固,会促进柱状晶定向生长和“外延生长”,导致大量柱状晶的形成和[100]B2织构的形成。如何有效避免大量柱状晶的形成,制备得到具有等轴晶结构、性能各向同性,同时提高其功能特性的SLM NiTi SMAs,是当前的研究热点。当前,国内外研究结合熔池凝固过程中的温度场分布、晶粒形核长大的理论等,通过外加磁场、基板预热和调控工艺策略等方法影响熔池凝固行为,获得了具有特定微观结构的SLM NiTi SMAs,在一定程度上减少了柱状晶的形成。同时,后续热处理也是有效获得各向同性SLM NiTi SMAs的有效方法。 (5) SLM多孔NiTi SMAs的生物力学性能与表面改性研究。SLM多孔NiTi SMAs相对传统多孔NiTi具有孔隙孔径可控、可设计度高、可个性化定制等优点。SLM多孔NiTi SMAs的研究目前主要涉及制备精度、微观结构、压缩性能、形状记忆性能、超弹性和体外生物相容性等,对于生物力学性能,如人体温度、人体体液下的强度、形状记忆性能、超弹性等,却没有涉及。后续研究需要对SLM多孔NiTi的生物力学性能开展大量研究,为其作为骨科植入物打下坚实基础。功能化表面改性处理是实现NiTi SMAs生物相容性进一步提高、减少Ni原子释放的关键步骤。通过抛光、表面合金化和涂层等表面技术,可大幅改善多孔NiTi SMAs的生物行为。此外,这些表面处理还可改善其促成骨、抗菌、抗炎等生物功能。 (6) SLM多孔NiTi SMAs的植入实验与性能评估。尽管多孔NiTi SMAs在椎间融合器等骨科植入物方面已经取得了显著的临床应用效果,但SLM多孔NiTi植入物的临床应用尚未实现。开展SLM多孔NiTi SMAs的植入实验与性能评估是实现其临床应用的必要前提。通过多孔结构设计与优化,制备得到满足不同植入需求的多孔NiTi植入物;通过动物植入实验,评估其生物相容性,检测其植入需求完成度,并对其综合性能进行准确评估,得到SLM多孔NiTi植入物的综合评估数据库,能够为实现个性化的多孔NiTi植入物在骨缺损治疗、骨缺损自填充等方面的临床创新应用奠定基础。整体而言,SLM多孔NiTi植入物临床应用的实现是一个充满挑战的跨学科难题,需要材料、机械、生物、医学等多学科共同来完成。