《牛津大学首次实现对钙钛矿薄膜的原子尺度表征》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-12-23
  • 多晶杂化金属卤化物钙钛矿是高效光伏应用的良好材料,但其出色性能背后的原理机制还没有完全明了。因此亟需利用先进成像技术实现对多晶杂化金属卤化物钙钛矿薄膜纳米(甚至原子)尺度的高分辨表征,以探明其潜在的工作机制,为钙钛矿太阳电池技术的进一步发展提供科学理论依据。
    由牛津大学Laura M. Herz教授课题组牵头的联合研究团队利用低剂量低角度环形暗场(LAADF)扫描透射显微镜(STEM)成像技术,首次实现了对甲脒碘化铅(FAPbI3)钙钛矿薄膜原子尺度的高分辨成像,系统观测研究了薄膜的晶界、缺陷、分解等形成过程和机理,为人们深入理解钙钛矿电池工作机制积累了关键的理论知识。由于多晶有机无机杂化金属卤化物钙钛矿薄膜中含有有机成分,因此其对电子束的能量较为敏感,传统的透射电镜电子束能量过高会破坏钙钛矿相结构。为此研究人员利用先进的低电子辐射剂量的LAADF-STEM成像系统来观测FAPbI3薄膜微观结构,低分辨率的透射电镜图片显示薄膜为单一的立方相结构,而高分辨率的图像显示薄膜晶格具有择优的[001]取向,即沿着[001]轴方向呈现出有序的排列。通过对薄膜长时间观察,研究发现成像系统的电子束辐照会导致FA+离子的损失,这导致薄膜在成像的最初阶段钙钛矿结构转变为部分FA+耗尽但有序的钙钛矿晶格,在电镜图像中表现为有序的明暗相间方格图案。成像图片观察到的中间方格图案就是由最初随机的、电子束诱导的FA+损失触发的,随后是FA+离子的重新排序。这个中间结构的发现解释了为什么在偏离化学计量情况下钙钛矿可以保持其钙钛矿结构,从而保障了钙钛矿薄膜的优异光电化学性质。而进一步延长成像时间则电子束会导致预期钙钛矿组分分解,形成分解产物碘化铅(PbI2)。研究人员进一步研究了杂化钙钛矿膜内部界面上的原子排列规律发现:在杂化钙钛矿膜中过量的PbI2与FAPbI3晶格无缝地交织在一起,并且可以从其本体六方结构变形以形成相干过渡边界,表现出较低的晶格失配和应变,即PbI2结构区域几乎完全跟随周围钙钛矿的结构和取向,这表明PbI2可能是钙钛矿的生长种子。上述实验结果很好地解释了目前实验中普遍存在的现象,即过量PbI2的存在往往不影响钙钛矿太阳电池的性能。进一步观察发现钙钛矿薄膜这种有序的晶格结构一直延伸到薄膜的晶界处,而晶界就没有择优取向。最后,研究人员研究了FAPbI3晶格中缺陷、位错和堆垛层错的性质。发现位错沿垂直于其滑移面的方向分离,在Pb-I子晶格上以空位形式存在的对准点缺陷,和对应于半个单元格移位的叠加,将Pb-I序列与I–序列列连接而不是与FA+列连接。

    图1 FAPbI3钙钛矿薄膜微观结构LAADF-STEM表征图谱

    该项研究利用低剂量低角度环形暗场扫描透射显微镜(LAADF -STEM)成像技术,首次实现了原子尺度对钙钛矿微观结构观察,揭示了薄膜的晶界、缺陷、分解等形成过程和机理,为设计开发高性能的钙钛矿太阳电池奠定了关键理论知识。相关研究成果发表在《Science》。

  • 原文来源:https://science.sciencemag.org/content/370/6516/eabb5940.full
相关报告
  • 《南京大学在国际上首次实现大面积全钙钛矿叠层光伏组件的制备》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-05-31
    • 太阳能电池可将太阳能直接转变为电能,是一种重要的获取清洁能源的途径。 光伏发电成本依赖于太阳能电池的光电转换效率,有研究显示,转换效率每提升1%,发电成本可降低7%,但目前晶硅太阳能电池光电转换效率出现瓶颈,因此,研发制备更低成本、更高效率的太阳能电池是实现光伏发电平价上网的关键,也将为实现“双碳”目标提供重要科技支撑。 近日,南京大学现代工程与应用科学学院谭海仁教授课题组和英国牛津大学学者,运用涂布印刷、真空沉积等技术,在国际上首次实现了大面积全钙钛矿叠层光伏组件的制备,开辟了大面积钙钛矿叠层电池的量产化、商业化的全新路径。 经国际权威第三方测试机构认证,该组件稳定的光电转换效率高达21.7%,是目前已知的钙钛矿光伏组件的世界最高效率。该成绩被最新一期的《太阳电池世界纪录表》收录,相关成果近日刊发于国际权威学术期刊《科学》。 研究团队研发的全钙钛矿叠层光伏组件。课题组供图 制备工艺和结构不稳定制约钙钛矿叠层太阳能电池产业化 发展清洁、低成本的太阳能光伏发电,是实现“碳达峰碳中和”的重要途径与技术保障。2022年一季度,我国光伏发电量841亿千瓦时,同比增长22.2%。 “但是,随着技术的发展,传统的晶硅单结太阳能电池也遭遇了两个发展瓶颈,一是现有的工业生产能力已经逼近晶硅单结太阳能电池光电转化效率的极限,二是成本高、能耗大,将石英砂提炼为工业硅,制成单晶硅的过程,需要超过1000℃的高温,而钙钛矿太阳能电池的制备大约需要100℃。”作为此次研究的通讯作者,谭海仁坦言,生产成本更低、更节能的钙钛矿太阳能电池,被视为近年来光伏产业发展的新机遇,而钙钛矿叠层电池的结构优化和技术创新将加速光伏产业实现降本增效。 此前,谭海仁课题组提出了新型隧穿结构,突破了全钙钛矿叠层制备难题,发展了增强钙钛矿晶粒表面缺陷钝化的新方法,创造了全钙钛矿叠层电池光电转化效率26.4%的世界纪录,并在国际上首次超越了单结钙钛矿电池的最高认证效率,相关成果已发表于《自然》等国际权威学术期刊。 “虽然实验室小面积钙钛矿电池已取得很高的转换效率,但大面积钙钛矿光伏电池块的商业化进程依然面临诸多挑战。”谭海仁并不讳言,此前的研究虽然已经制备出1平方厘米左右的高效钙钛矿叠层电池,但量产化的制备方法和电池块中互连结构的长期稳定性是产业化的关键瓶颈。 增加铯含量,采用涂布印刷、真空沉积等技术让材料均匀成膜 要实现量产化制备,首先需要解决宽带隙钙钛矿薄膜大面积均匀制备的难题。 “宽带隙钙钛矿中含有较高的溴化物组分,其溶解度较低,溶剂选择空间较小,结晶调控不易,难以获得高质量均匀致密的薄膜,国际上对其量产化制备技术研究几乎是空白的。”谭海仁指出。 针对上述挑战,研究团队首次提出可量产化的全钙钛矿叠层电池制备方案,他们采用涂布印刷、真空沉积等制备技术替换实验室常用的旋涂成膜工艺,制备了20平方厘米的全钙钛矿叠层电池。 “此前我们使用的是旋涂工艺,即先把钙钛矿溶液涂抹在玻璃基底上,再用机器快速带动整块玻璃基底旋转,利用离心力让溶液分布在基底上形成薄膜,但这种方法会导致薄膜不均匀。此外,旋涂工艺的机器转速很快,所以很难带动大面积的玻璃基底旋转,这决定了它不适合量产钙钛矿太阳能电池。”谭海仁说。 为了让钙钛矿溶液能大面积均匀成膜,研究团队首先使用了刮刀涂布工艺。谭海仁解释,他们将溶液滴在透明的导电玻璃上,然后用刀片向前刮过去,这就在玻璃表面形成一层均匀的湿薄膜,用这种方法,他们完成了空穴传输层、钙钛矿层的刷涂,再用真空沉积的方法制备电子传输层和隧穿结构来保护第一层钙钛矿,然后再涂空穴传输层和第二层钙钛矿,真空蒸镀电子传输层和金属电极后,一个钙钛矿太阳能电池块框架就像搭积木一样“出炉”了。 仅搭好“房子”还不够,它还得“身材”匀称、结实。谭海仁说,最初制备钙钛矿叠层电池块时,因为溶液结晶时间久,薄膜还是不均匀,“后来想到,如果能像打印纸张一样,打印出来的瞬间墨水就干了,也许就能提高薄膜质量和生产效率。” 针对宽带隙钙钛矿在涂布过程中结晶调控难题,团队几经尝试后,将钙钛矿组分中A位阳离子的铯含量提高到35%,再结合气吹辅助结晶的刮涂方法加速溶液挥发,终于得到了一个结晶性最好且平整致密的宽带隙钙钛矿薄膜,这为量产化制备全钙钛矿叠层组件打下基础。 铯为何会成为“天选之子”让电池快速稳定成型?谭海仁介绍,“铯是无机离子,不易挥发,会提高器件的热稳定性,还能减小晶格应变,提升器件的光稳定性,也能降低结晶势垒,加快器件成核速率。” 制备特殊的电子传输层,既导电又避免不同材料互相“伤害” “从理论上说,当前单层钙钛矿太阳能电池的光电转化效率最高仅为约33%,而双层结构最高可达45%,发电效率越高,成本就越低。”长期的深入研究,让谭海仁发现,想实现钙钛矿电池内部结构“从一到二”的跨越,还要考虑器件材料间如何“和谐共处”。 “在串联型钙钛矿光伏组件中,每两个子电池的连接区存在复杂的互连结构。互连区内由于钙钛矿吸光层与背面金属电极间直接接触,钙钛矿中卤素离子会与电极中的金属相互扩散,导致金属材料被腐蚀、钙钛矿材料的电学性能下降,影响电池块的光电转换效率。”谭海仁说,为了克服这个难题,团队在钙钛矿吸光层与背面金属电极间,采用原子层沉积的方法,制备了一层二氧化锡电子传输层。 “二氧化锡是半导体材料,可以低温度环境生长,导电性比较好。不会影响互连区域中金属电极与前表面透明导电氧化物电极间的欧姆接触。同时,二氧化锡电子传输层可以保形沉积于子电池间的互联区域,阻隔了钙钛矿与金属间的直接接触。作为电池活性区域中的电子传输层,它还阻止空气对窄带隙钙钛矿的氧化,实现大气条件下组件的互联制备、测试和封装等操作过程。”谭海仁解释。 基于此创新性的组件结构设计,显著提升了组件的制备重复性、光伏性能以及稳定性。经日本电器安全和环境技术实验室测定,该全钙钛矿叠层太阳能电池块的光电转化效率21.7%,是目前报道钙钛矿光伏组件的世界最高效率,这一成绩被最新一期的《太阳电池世界纪录表》收录。 大面积钙钛矿叠层光伏组件展现的潜力激发了团队更大的斗志,谭海仁表示,如果要推动该技术的产业化,还要在印刷、制备钙钛矿的工艺上,做更多研发,制备20平方厘米墨水相对简单,但如果扩展到一平方米大小,还需要创新哪些技术条件,需要持续验证。
  • 《钙钛矿电池的十年之变》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-07-16
    • ■本报见习记者程唯珈 转眼间2019年已经过半,对中国科学院化学研究所研究员宋延林来说,好消息还在不断涌现。从喷墨打印制备器件,到图案化光子晶体电池设计,再到柔性可穿戴钙钛矿电池应用,他所从事的钙钛矿电池研究取得了一系列突破性进展。 近日,他带领的科研团队通过引入氟离子添加剂,印刷制备了一种新型导电高分子透明电极,并基于此成功制备了柔性钙钛矿太阳能电池(0.1cm2)和模组(25cm2),其光电转换效率突破19%和10%。相关成果发表于《焦耳》。 “近年来,钙钛矿电池发展迅速,科学家的一系列发现解决了深层次科学技术问题,提升了转化效率,让我们不断向发展高效稳定的太阳能电池迈进。”回首钙钛矿电池的十年发展,宋延林为科学家取得的成就感到骄傲。 从液态到固态 中国科学院化学研究所博士胡笑添告诉《中国科学报》,进入中国科学院以来,研究钙钛矿电池的机理和制备工艺一直是他的中心课题。 据他介绍,钙钛矿电池中既没有钙元素,也没有钛元素,而是得名于其中的吸光层材料——一种钙钛矿型晶体结构。钙钛矿电池是以ABX3钙钛矿晶体结构的半导体材料制备的太阳能电池,其中A通常为有机阳离子,B为Pb离子,X为卤素元素。由于制备工艺简单和成本低廉,对于科学家而言,钙钛矿电池是目前最有前景的光电技术之一,更是所属太阳能电池中的佼佼者。 2009年,日本科学家TsutomuMiyasaka率先将钙钛矿材料用于染料敏化太阳能电池作为吸光材料,采用CH3NH3PbI3敏化TiO2阳光极和液态I3-/I-电解质获得了3.8%的光电转化效率。但是,这种材料不稳定,几分钟后即宣告失败。 2011年,韩国成均馆大学Nam-GyuPark课题组通过技术改进,将转化效率提高到了6.5%。然而,由于仍然采用液态电解质,导致材料不稳定,几分钟后效率便削减了80%。 “液态电解质的钙钛矿敏化太阳能电池存在一个致命的缺陷,即液态电解质会溶解或者分解钙钛矿材料,可使电池在几分钟内失效。”胡笑添说。 能否找到一种新的电解质材料?为此,科学家不断扩大视野,创新性地将固态电解质作为空穴传输层。2012年牛津大学HenrySnaithHE和MikeLee课题组引入了空穴传输材料Spiro-OMeTA,实现了钙钛矿电池的固态化,转化效率接近10%。同时,该器件显示出极好的稳定性:未封装器件存放500小时后光伏性能未明显衰减。 至此,钙钛矿电池成为新的研究热点。 不断刷新世界纪录 在层出不穷的钙钛矿电池相关研究中,科学家发现,钙钛矿不仅吸光性好,还是不错的电荷运输材料。为此,他们不断对钙钛矿材料和结构进行改善,以提高钙钛矿电池的光电转换率。 2012年,牛津大学HenrySnaith将电池中的TiO2用铝材(Al2O3)进行了代替,这样钙钛矿在电池片中就不仅是光的吸收层,也同样可作为传输电荷的半导体材料。由此,钙钛矿电池的转换效率一下攀升到15%。 鉴于钙钛矿在太阳能电池中的应用和电池效率快速提升,2013年12月20日,钙钛矿入选美国《科学》2013年十大科学突破。 “钙钛矿材料便宜、易于制备,已经取得15%的光电转换效率。虽然比目前商业化的硅基太阳能电池效率低,但是钙钛矿型材料太阳能电池效率提升迅速,它和其它类型太阳能电池集成以后可以捕捉和转换更宽光谱范围的太阳光。”《科学》杂志如此解释入选理由。 2015年,中国、日本、瑞士合作制得大面积(工作面积超过1cm2)钙钛矿型太阳能电池,使其首次可以与其他类型太阳能电池在同一标准下比较性能,15%的能量转化效率得到国际权威机构认证。2016年,瑞士洛桑联邦理工学院MichaelGr?虞tzel教授课题组进一步将认证效率提高至19.6%。 几年来,这一数据不断攀升。2018年,中国科学院半导体研究所研究员游经碧课题组提出有机盐钝化钙钛矿表面缺陷的方法,先后研制出转换效率为23.3%、23.7%的钙钛矿太阳能电池,连续两次作为世界纪录被美国国家可再生能源实验室(NREL)发表的BestResearchCellEfficiencies收录。 近期,钙钛矿电池的光电转化效率又得到提升。中国科学院大连化学物理研究所研究员刘生忠告诉《中国科学报》,今年4月,韩国化学技术研究所(KRICT)科学家利用溶液旋涂法制备出一种新型钙钛矿材料,创造了24.2%钙钛矿电池效率的新纪录。 “钙钛矿电池效率提升如此迅速,这在光伏研究历史上是前所未有的。这反映出钙钛矿材料在光电领域的巨大潜力。如果最终实现大规模产业化,必将是一个颠覆性材料。”刘生忠说。 机遇与挑战并存 短短10年内,钙钛矿电池的光电转换效率已从最初的3.8%提高到了24.2%。然而,钙钛矿电池的商业化之路仍面临着巨大挑战。 在刘生忠看来,器件的稳定性是首要考验。“钙钛矿薄膜易于受到水分、氧气、紫外光照等因素影响而引起薄膜降解,从而导致电池性能逐步衰退,而这需要改进电池封装、钙钛矿结构维度下降、增加疏水层等。” 同时,规模化制造工艺也需提上议程。刘生忠介绍,目前高效率的钙钛矿电池均是小面积尺寸(小于1cm2),不利于商业化生产,因此想要让钙钛矿电池走出实验室需发展大面积的规模化制造技术。 谈及未来发展,胡笑添认为,钙钛矿电池有望取代硅基电池进行大面积并网发电和分布式发电。钙钛矿还可以实现柔性可穿戴和半透明贴附,应用在未来智能器件和智能建筑、汽车等领域。 这一想法已得到了验证。宋延林告诉《中国科学报》,课题组针对钙钛矿太阳能电池低温可溶液加工的特点,已发展了一系列柔性可穿戴钙钛矿太阳能电池。 “研究人员通过纳米组装—印刷方式制备蜂巢状纳米支架作为力学缓冲层和光学谐振腔,从而显著提高了柔性钙钛矿太阳能电池的光电转换效率和力学稳定性。同时,引入两亲性弹性结晶基质到钙钛矿前驱体溶液中,以解决钙钛矿晶体薄膜的脆性问题,实现了可穿戴模组。”宋延林说。 在他看来,钙钛矿相比传统硅基电池的应用更为广泛。虽然短时间内取代硅基电池进行规模发电还不太容易,但柔性和半透明等新应用方式可以扬长避短发挥钙钛矿电池的优点,有望最早进入人们的日常生活中。 相关论文信息:https://doi.org/10.1016/j.joule.2019.06.011