《电工材料推陈出新 助电触头“延年益寿”》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-03-18
  • 随着电网的快速发展,短路电流问题已逐渐成为制约电网负荷增长和电网发展的突出因素,电力系统对高压大容量开关设备需求迫切。

      “依托国家电网公司科技项目,全球能源互联网研究院有限公司(以下简称联研院)历经5年科研攻关,成功开发出高性能石墨烯改性高压断路器电触头产品。”3月14日,联研院电工新材料研究所所长陈新在接受科技日报记者采访时表示。

      近年来,我国华东电网、华南电网等部分252千伏(kV)及以上电压等级变电站最大短路电流达到甚至超过63千安培(kA),对大电网的安全运行和增容升级带来了严峻挑战。实现高压断路器灭弧室电触头材料升级可直接实现扩容,免去扩建变电站的巨额成本,是解决这一问题的有效手段。

      “高压大容量断路器的开断次数主要受制于断路器中的电触头寿命,当前使用的高压断路器电触头材料主要采用铜钨合金技术路线。”平高集团有限公司总工程师钟建英告诉科技日报记者,现役国产铜钨合金电触头产品柔韧性及延伸率较低,动作过程易产生断裂;材料耐烧蚀性能不足,电弧烧蚀易导致电触头开裂失效。因此,有效提高电触头材料的耐磨性、导电性、抗电弧烧蚀性等关键性能指标,对减少断路器的故障率、维护电网的安全稳定运行具有重要意义。

      电触头抗电弧烧蚀性能和耐摩擦磨损性能的协同提升是提高高压断路器抗短路能力的关键。依托国网科技项目,联研院联合欧洲研究院、平高集团以及网省公司组建了一支以“80后”科技骨干为主的青年科技攻坚团队。

      “项目团队突破了石墨烯电触头材料定向成分设计与活化烧结溶渗一体化成型关键技术,实现了多型号石墨烯改性电触头工业级制备,其导电率、抗弯强度等关键性能指标全面优于国内外现役产品,大幅提升了现役高压断路器的电寿命,填补了石墨烯改性高压开关电触头材料领域的技术空白。”陈新说。

      2020年10月29日—31日,在多次验证方案规划下,基于该电触头的平高集团新型敞开柱式252kV/63kA SF6断路器,成功实现一次性连续满遮断容量开断20次。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2021-03/17/content_464366.htm?div=-1
相关报告
  • 《宁波材料所合成出新颖二维MXene材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 发布时间:2017-04-19
    • 二维材料因其高比表面积,独特的电子结构及物理化学性质而引起人们的广泛关注。作为研究最为广泛的二维材料,石墨烯因其超高的力学强度、优异的电导率及热导率,在电化学储能,透明电极材料,及纳米复合材料等领域展现出广泛的应用前景,但本征的零带隙及单一的化学组成限制了其在场效应晶体管等领域的应用。二元及三元二维材料,如金属氧化物、层状金属硫族化合物,六方氮化硼,层状氢氧化物等体系的研究日益受到关注。二维层状过渡金属碳化物纳米片(MXenes)材料则是近年来发现的一类新型二维材料,由美国Drexel大学Michel Barsoum在此领域做了大量开拓性研究,目前该实验室已相继获得Ti3C2Tz, Ti2CTz, Ta4C3Tz, TiNbCTz, (V0.5,Cr0.5)3C2Tz, Ti3CNTz, Nb2CTz,V2CTz, Nb4C3Tz, Mo2TiC2Tz, Mo2Ti2C3Tz, Cr2TiC2Tz, , Mo2CTz, Ti4N3Tz等MXenes结构。MXenes具有高比表面积、良好的导电性和亲水性,理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。前期研究发现多种阳离子能够自发地插入到MXenes材料层间,因此在储能领域也有良好的应用前景。如已有的研究报道,Ti3C2Tz、Ti2CTz、V2CTz、Nb2CTz等可作为锂离子电池和超级电容器的电极材料,它们具有较高的比容量(可达410 mAh/g @ 1 C)和体积比电容(可达900F/cm3)以及良好的充放电循环稳定性(Science, 2013, 341, 1502-1505;Nature 2014, 516, 78-81)。因此,MXenes被认为极具发展潜力的新一代二维纳米功能材料。   正因为此,如何抢先合成出具有丰富d电子结构的过渡金属碳化物材料已成为全世界关注的焦点。目前,MXenes的制备主要是通过HF酸,NH4HF2溶液,LiF及HCl混合溶液及低共熔混合盐介质中对A位为Al的MAX相材料(为一超过70组员的材料体系)中的Al原子选择性刻蚀而得到。由于过渡金属Zr及Hf难以形成A位为Al的MAX相,因此,截止目前,关于Zr系及Hf 系的MXenes材料仍未见报道。中国科学院宁波材料所特种纤维与核能材料工程实验室采用原位反应放电等离子烧结法(SPS)获得的高纯新型Zr3Al3C5层状碳化物作为前驱体,以HF酸为蚀刻剂,选择性剥离键合较弱、易于水解的Al-C结构单元,首次获得Zr系二维MXenes材料。该工作已发表在国际期刊《Angewandte Chemie-International Edition》(128, 5092-5097, 2016)。   相比于Zr系材料,Hf系层状碳化物更难获得单一的物相,通常获得的是Hf3Al3C5、Hf3Al4C6和Hf2Al4C5三元化合物的混合相,并且由于较强的亚层间界面结合,我们发现直接以三元Hf-Al-C复合相为前驱体难以通过选择性刻蚀法获得Hf系二维材料,所得到的剥离产物主要为立方相HfC。已有的研究表明,基于这些三元相的单相固溶体相对更易获得,并且有助于改善相纯度。此外,考虑到Hf-C与Al-C片层间较强的相互作用,为进一步实现有效剥离,对单胞内的Hf-C及Al-C亚层间的界面进行调控,以弱化Hf-C与Al-C片层间的界面结合非常重要。我们基于固溶法调谐单胞内亚层的思路,在Al位引入少量Si,采用SPS方法合成了新型Hf2[Al(Si)]4C5和Hf3[Al(Si)]4C6固溶体材料,以此固溶体为前驱体,以HF酸为蚀刻剂,实现了对Al(Si)-C结构单元的选择性剥离,首次获得了Hf系二维MXenes材料。借助结合能和原子电荷计算分析,阐明了Si掺杂促进氢氟酸剥离过程的微观机制,由于Si比Al多一个价电子,掺杂替代Al原子之后,能有效减弱Hf原子层和剥离的片层Al(Si)4C4之间的界面结合,对应结合能的数值从8.60 eV直接降低到4.05 eV,因而Si的引入实现了对单胞内HfC及Al(Si)-C片层界面的有效调谐,显著弱化了界面结合,进而实现了剥离。Hf系新颖二维碳化物材料在储能、吸波和光电器件上有着潜在的应用。该实验室发现其具有优良的电化学循环储能特性,在锂电池和钠电池测试中在电流密度为200 mAg-1 循环200次后分别得到体积比容量为1567 mAh cm-3 and 504 mAh cm-3. 高体积比容量材料有望应用于发可应用于空间飞行器、移动装备等小型化供能系统中。该新型Hf系MXene二维材料工作近期已经被国际期刊《ACS Nano》(DOI: 10.1021/acsnano.7b00030)接收发表。   另外,该实验室与香港城市大学支春义教授合作,利用常规水热处理方法获得了量子点结构的Ti3C2型MXene材料。该量子点材料具有很好的荧光特性和生物相容性,有望在无稀土发光显示材料和生物标记及光热治疗等领域得到广泛应用。该工作也将在2017年的《Advanced Materials》(DOI: 10.1002/adma.201604847)期刊上出版。   目前国际上MXene材料研究方兴未艾,正逐步成为继石墨烯、二硫化钼、黑鳞等二维材料之后新的研究热点。中国科学家在Zr系和Hf系对应MXene材料合成上的突破将有力扩展人们对于二维材料认识的视野,也对于纳米能源器件和光电器件研究提供全新的素材。   以上工作得到国家自然科学基金委(21671195,11604346,51502310,21577144,91426304)和中国科学院核能材料创新团队的支持。 图 Hf系MXene材料合成示意图和原子力显微镜形貌图。   目前元素周期表过渡族金属区域业已合成出对应的MXene材料,其中Zr系和Hf系由中国科学院合成
  • 《欧洲研究院:石墨烯改性电工材料新技术首次成功应用于电力行业》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-07-13
    • 等离子烧结法(SPS)制备的石墨烯改性铜钨合金复合材料样块 欧洲研究院供图 由位于柏林的全球能源互联网欧洲研究院(简称欧洲研究院)重点研发的石墨烯改性电工材料新技术此前成功应用于高压断路器新型电触头制备。近日,基于这种新型电触头部件的252KV/63KA敞开式柱上断路器在宁夏石嘴山步桥变电站中正式投入运行。 据介绍,这项高端电工材料新技术在世界范围内率先填补了石墨烯改性高压断路器电触头材料领域的技术空白,可以将高压断路器的全功率开断次数从12次提升至20次,从而最大程度延长断路器的检修间隔,提高设备可用率,降低系统全寿命周期成本。这对保障社会用电极其重要。 欧洲研究院是国家电网公司国网智能电网研究院有限公司(简称“智研院”)于2014年6月26日在德国投资组建的海外研究院,高端电工新材料是其重点攻关方向之一。自2016年启动石墨烯改性电工材料类基础研究工作以来,欧洲研究院与智研院国内团队紧密协作,探索了化学气相沉积(CVD)、真空烧结(SPS)等多种复合材料制备工艺,最终结合国内实际优选真空熔渗方法,成功制备新型材料并制成设备成品,设备成品于2021年成功通过型式试验。 真石墨烯改性铜钨合金电触头成品 欧洲研究院供图 欧洲研究院高端电工材料攻关团队负责人周明瑜介绍,石墨烯改性高压断路器用触头材料等一系列项目的成功执行,是中资企业“以海外先进技术反哺国内,并形成国内外优势互补的团队优势”的科研模式的生动实践,同时,利用石墨烯改性新型电工材料这一技术路线也打破了近八成石墨烯下游产品集中在低附加值、高成本的石墨烯加热器、理疗、可穿戴产品、涂料、导电添加剂等不具备强市场竞争力的应用产品的局限性,为石墨烯材料在能源行业的应用提供了新的方向。