Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2
Brandi N. Williamson, Friederike Feldmann, Benjamin Schwarz, Kimberly Meade-White, Danielle P. Porter, Jonathan Schulz, Neeltje van Doremalen, Ian Leighton, Claude Kwe Yinda, Lizzette Pérez-Pérez, Atsushi Okumura, Jamie Lovaglio, Patrick W. Hanley, Greg Saturday, Catharine M. Bosio, Sarah Anzick, Kent Barbian, Tomas Cihlar, Craig Martens, Dana P. Scott, Vincent J. Munster & Emmie de Wit
Nature (2020)
Abstract
Effective therapeutics to treat COVID-19 are urgently needed. While many investigational, approved, and repurposed drugs have been suggested, preclinical data from animal models can guide the search for effective treatments by ruling out treatments without in vivo efficacy. Remdesivir (GS-5734) is a nucleotide analog prodrug with broad antiviral activity1,2, that is currently investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir treatment was effective against MERS-CoV and SARS-CoV infection.2,5,6 In vitro, remdesivir inhibited replication of SARS-CoV-2.7,8 Here, we investigated the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection9. In contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs and reduced virus titers in bronchoalveolar lavages 12hrs after the first treatment administration. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment.