《氢氧化钴作为一种珍贵的无金属双功能电催化剂,用于高效的水分离》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-01-03
  • 高效稳定的电催化剂从廉价和丰富的稀土元素在整个水裂解过程中出现。本文介绍了一种简单快速的电沉积方法,将钴铁氢氧化钠直接沉积在镍泡沫上。钴铁氢氧化钠(CoFe / NF)纳米片不仅能很好地暴露出高活跃的表面积,而且还能促进质量和电荷的输送能力。作为阳极,钴铁/ NF electrocatalyst显示良好的氧进化反应催化活性的超电势马220 mV的电流密度10厘米−2。作为阴极,它表现出良好的性能在氢进化反应的过电压110 mV,马电流密度达到10厘米−2。当使用钴铁/ NF电极的阳极和阴极水分裂,低电池电压为1.64 V马10厘米−2和优秀稳定50 h。目前的研究表明了一种可能的途径来开发一种高活性和持久的替代贵金属电催化剂来实现整体水的分裂。

    ——文章发布于2017年12月18日

相关报告
  • 《美国高校开发三层双功能制氢催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-31
    • 由莱斯大学和休斯敦大学开发的一种新型高效、高度活跃的双功能催化剂可将水分解成氢和氧,而不需要像铂这样昂贵的金属。该研究小组认为,这项工作提供了一种简单的策略,即从地球丰富的材料中制造出高效的电催化剂,用于整体水分离。   由莱斯大学生产、休斯敦大学测试的电解膜是一种三层结构的镍、石墨烯和三元金属磷化物(FeMnP、铁、锰和磷)。泡沫镍使薄膜有一个较大的表面,使导电石墨烯保护镍不受降解,金属磷化物也能进行反应。   石墨烯,一种原子厚度的碳,是保护底层镍的关键。在化学气相沉积(CVD)炉中的镍泡沫上形成1至3层石墨烯,并且还通过CVD和单一前体将铁、锰和磷加在其上。   通过对镍泡沫和无石墨烯的磷化物进行了测试比较了中间的镍泡沫和无石墨烯的磷化物,结果发现导电石墨烯降低了氢和氧反应的电荷转移电阻。   Whitmire表示,该材料具有可扩展性,可应用于生产氢和氧的汽车工业中,也可用于电催化储存能量的太阳能和风力发电设施。   在氢进化反应(HER)和氧进化反应(OER)中,FeMnP表现出高的电催化活性。利用FeMnP / GNF作为阳极和阴极进行整体水分离,团队在低至1.55 V的电池电压下实现了10 mA cm-2的电流密度。通过密度泛函理论(DFT)的计算表明,暴露Fe和Mn位点的切面是实现HER高活性的必需条件。   Kenton Whitmire表示:“常规金属有时会在催化过程中氧化。通常,氢的进化反应是酸的,氧的进化反应是在碱中完成的。我们这次所研发的是一个稳定的材料,不管是在酸性还是碱性溶液中。”   这一发现建立在研究人员今年早些时候发明的一种简单的氧进化催化剂之上。在这项工作中,研究小组直接在一个半导体纳米线阵列上产生了催化剂,将太阳光转化为太阳能水分解的能量。
  • 《中科大 Ni纳米颗粒作为双功能电催化剂用于全分解水》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-13
    • 近年来,过渡金属氧化物、钙钛矿氧化物和层状双氢氧化物作为碱性电解质中的OER催化剂已进行了广泛研究,而过渡金属磷化物、硫化物和碳化物在酸性电解质中具有优越的HER性能。尽管如此,由于pH范围不匹配,将上述OER和HER催化剂集成于同一电解池中以实现全分解水是具有挑战性的。因此,研发用于OER和HER的高性能双功能电催化剂非常必要。 纳米结构过渡金属(化合物)/氮掺杂碳纳米材料(M/N/C)由于其低成本、高丰度、高效和稳定的催化性能,是一种前景良好的催化剂,在电化学催化领域引起了相当大的关注,但能催化全水分解的材料鲜见报道。另外,对于新型电化学催化剂体系,还需要清楚地了解材料中活性位点的结构。 成果简介 近日,中国科学技术大学俞书宏教授、梁海伟教授(共同通讯作者)等使用廉价的水热碳质纳米纤维、吡咯和NiCl2作为前驱体制备了Ni-N共掺杂碳纳米纤维负载部分氧化的Ni纳米颗粒(PO-Ni/Ni-N-CNFs)的纳米复合电催化剂,并在Nano Energy上发表了题为“Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting”的研究论文。得益于有效的活性中心、介孔结构和相互连接的一维纳米纤维网络,所得纳米复合电催化剂在碱性介质中对HER和OER均表现出优异的催化活性和持久性。 此外,将PO-Ni/Ni-N-CNFs作为双功能催化剂实际应用于分解水,在1.69V的电压下达到了10mA·cm-2的电流密度。 综上所述,PO-Ni/Ni-N-CNFs复合材料的优异性能应归因于以下三个重要方面的协同控制。首先,催化剂中存有三类内在活性位点,包括暴露的PO-Ni、Ni@C和Ni-Nx,可以有效催化HER和OER。尽管已证实暴露的PO-Ni结构是主要的活性位点,但Ni@C和Ni-Nx也为PO-Ni/Ni-N-CNFs催化剂提供了部分活性。其次,PO-Ni/Ni-N-CNFs具有较高的比表面积(241.0 m2·g-1),介孔结构和较大的总孔体积(0.21 cm3·g-1),有利于上述活性位点的暴露以及电催化相关物种的快速传输。最后,高度石墨化的CNF网络结构不仅有利于电子快速传递,而且还提高了其催化稳定性。当用作全分解水催化剂时,PO-Ni/Ni-N-CNFs能够在碱性电解池、1.69 V电压下达到10 mA·cm-2的电流密度,同时具有出色的耐久性。理解催化剂中的主要活性位点将为开发用于电解水以及其它电催化过程的高性能双功能催化剂提供更多机遇。 文献链接: Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting (Nano Energy, 2018, DOI: 10.1016/j.nanoen.2018.06.071)