《去除草甘膦污染的水处理方法》

  • 来源专题:水环境治理与保护
  • 编译者: 王阳
  • 发布时间:2023-10-30
  • 草甘膦是一种广泛使用的除草剂,由于其能有效控制杂草、入侵物种和农业害虫等有害植物的生长,因此在全球范围内得到了广泛的应用。然而,草甘膦可以通过多种途径进入水体,如农业灌溉、雨水冲刷和工业废水排放等,导致水质污染。研究表明,草甘膦及其代谢物具有潜在的致癌性。此外,由于草甘膦的水溶性较高,过量使用或不当处理都可能导致其在水体中的积累。在水环境中,草甘膦不仅会影响水质,还可能对水生生物产生毒性效应。一些研究甚至指出,随着转基因大豆的生产扩张,草甘膦引起的水质污染可能导致婴儿死亡率大幅增加,同时,婴儿出生体重偏低和早产的可能性也提高。巴西圣保罗州立大学(UNESP)的研究人员开发了一种从水中去除草甘膦的策略,草甘膦是世界上最常用的除草剂之一。在可持续发展理念和循环经济概念的启发下,研究人员利用甘蔗渣这种制糖和乙醇工厂产生的废料作为原料,经过分离和化学处理后,利用甘蔗渣纤维作为有效的草甘膦的吸附材料。本研究以pH dependence of glyphosate adsorption from aqueous solution using a cationic cellulose microfibers (cCMF) biosorbent为题目,发表在《纯粹与应用化学》(Pure and Applied Chemistry)。文章的第一作者Maria Vitória Guimar?es Leal表示,草甘膦由于其成本低和提高作物产量的潜力大,被广泛用于控制杂草、入侵物种和农业害虫等有害植物的生长,但科学研究表明,草甘膦可能危害人类健康,特别是可能造成癌症风险。奥地利、保加利亚、哥伦比亚、哥斯达黎加、丹麦、萨尔瓦多、德国和希腊等国限制或禁止使用含草甘膦的产品。在巴西,草甘膦的年使用量平均为17多万公吨,其中一部分被雨水带到了河流、水井和其他水生环境中。研究团队研究利用将分散在液体或气体介质中的分子附着在固体不溶性表面(通常是多孔的)的吸附原理,以废弃物甘蔗渣作为吸附原料,使草甘膦附着在其表面,从而实现通过过滤、脱液或离心工艺,最终去除水体污染物。

    原文链接:

    Leal, Maria Vitória Guimar?es, Gomes, Andressa Silva, Tolosa, Gabrieli Roefero, Dognani, Guilherme and Job, Aldo Eloizo. "pH dependence of glyphosate adsorption from aqueous solution using a cationic cellulose microfibers (cCMF) biosorbent" Pure and Applied Chemistry, vol. 95, no. 9, 2023, pp. 991-1000.

    https://doi.org/10.1515/pac-2022-1205

  • 原文来源:https://smartwatermagazine.com/news/agencia-fapesp/brazilian-researchers-develop-method-purifying-water-contaminated-glyphosate
相关报告
  • 《2024年除草剂专利授权汇总:涉及草甘膦、精草铵膦、砜吡草唑和唑啉草酯等上百种产品》

    • 来源专题:绿色化工
    • 编译者:武春亮
    • 发布时间:2025-03-10
    • 2024年我国除草剂领域的专利授权数量显著增长,涵盖了化合物合成、中间体制备、组合物制剂以及新型潜力化合物等多个方面,这不仅反映了行业的蓬勃发展态势,也彰显了企业在技术创新和知识产权保护方面的高度重视。 注:本文仅整理农药产品应用发明专利的授权情况,对农药合成装置、具体农药产品废水处理、尾气回收以及农药含量检测方法等类型的授权专利不包含在内。 新型除草剂潜力化合物专利 AgroPages世界农化网不完全统计发现,2024年我国共有超过72项新型除草剂潜力化合物专利获得授权,涵盖约69种不同结构的化合物。专利发明授权公告表明,这些化合物在除草活性和作物安全性方面均表现出色,具有显著的应用潜力。 在2024年获得专利授权的新型除草剂潜力化合物中,跨国公司及其他国外公司共申请了30项,占比达43.5%。其中,先正达公司表现最为突出,共获得17项专利授权,涵盖14种化合物结构;其次是拜耳公司,获得7项专利授权。此外,富美实、巴斯夫、科迪华、韩农等跨国企业也均有除草剂专利在我国获得授权。 与此同时,国内农药企业以及高校和科研机构在2024年授权的新型除草剂潜力化合物专利中占据主导地位。扬农、清原、先达、海利尔等国内知名农药创制企业表现不俗,均在该领域取得了重要成果。此外,浙江工业大学、南开大学、华南农业大学、中国农业大学等科研院校也取得了多项新型除草化合物专利授权。 原药/中间体化合物合成专利 除草剂原药化合物合成制备方面,2024年不完全统计授权了43项专利,其中与草甘膦、L-草铵膦、砜吡草唑相关的除草剂专利总数接近半数。除此之外,其他如草铵膦、氰氟草酯、苯嗪草酮、2,4-滴、苯草醚、硝磺草酮和敌稗数十种除草剂化合物也有多项专利申请被授权。 草甘膦原药制备方法方面,兴发集团子公司湖北泰盛化工有限公司在草甘膦生产技术领域取得了3项发明专利授权(CN115232167B、CN115746052B、CN115784900B),涵盖了连续化合成、三乙胺纯化及优化水解工艺。安徽东至广信农化有限公司2项专利涉及草甘膦原药的制备,专利CN113402549B通过添加磷酸酯两性表面活性剂优化合成工艺,提高收率和纯度;专利CN114031637B则提供了一种草甘膦连续水解方法,使用改性载体负载对甲苯磺酸作为酸性催化剂,从源头避免氯盐生成降低能耗。江山股份取得的专利CN110407870B公开的草甘膦制备方法采用微通道反应器实现连续化生产,提高传质传热效率,减少副反应,提升产品纯度和收率。 在L-草铵膦(精草铵膦)原药制备授权专利中,利民股份子公司河北威远生化和永农生物等企业提出的合成方法具有显著的创新性和应用价值。例如,河北威远生化的专利CN115636849B提出了一种以L-高丝氨酸为原料的合成工艺,通过氯化、膦酰化和水解反应,将传统五步反应简化为三步,显著提高了生产效率,产品收率可达90%以上,纯度可达97%以上。专利CN115896195B则采用生物酶催化技术,通过D-氨基酸氧化酶和氨基酸脱氢酶的联合应用,实现了从外消旋草铵膦到L-草铵膦的高效转化。实验结果显示,该方法制得的L-草铵膦的收率可达98%以上,光学纯度(ee值)达到100%。永农生物取得的L-草铵膦制备方法专利CN114989213B,通过特定的中间体化合物和自由基引发剂(如过氧化新戊酸叔丁酯),在较低温度(75℃)下实现高收率和高光学纯度的L-草铵膦合成。利尔化学专利CN114650997B等其他几项制备合成专利也分别聚焦于L-草铵膦的合成技术,提出了多种创新方法。这些专利技术不仅在实验室层面表现出色,部分还具有显著的工业化应用潜力。通过简化工艺、降低成本和减少环境污染为L-草铵膦的高效生产提供了新的思路。 近几年砜吡草唑市场需求和热度持续攀升,其合成工艺的研究也日益受到关注。2024年多家企业围绕砜吡草唑的合成创新性改进方法取得授权,从不同的角度出发解决现有合成技术中存在的障碍。例如,江苏七洲绿色化工股份有限公司的专利CN117229273B和定远众邦生物工程有限公司的专利CN114716429B注重环保和绿色化学,通过优化反应条件和催化剂,减少了废弃物的产生。山东润博生物科技有限公司和潍坊新绿化工有限公司的专利CN115850254B、CN117924265B,则侧重于提高反应效率和产物纯度,通过高效的催化剂和连续化操作,实现了高收率和高纯度的目标。吉林凯莱英医药公司的专利CN118255757B通过多个连续工序(环化、羟甲基化、二氟甲基化、氯代、缩合和氧化),解决了传统间歇工艺中传质传热能力差、反应时间长、收率低等问题,具有显著的工艺优势和环保效益。 作为农药原药合成过程中不可或缺的关键化合物,农药中间体的合成工艺研究是原药企业实现降本增效、提升产业链竞争力的重要环节。2024年,包括精草铵膦、砜吡草唑、唑啉草酯、甲磺草胺和氟噻草胺、苯嘧磺草胺在内的数十种农药原药的关键中间体化合物专利获得授权。 下表中统计了3项分别针对精草铵膦合成中间体(S)-4-氯-2-氨基丁酸酯、乙酰-L-高丝氨酸内酯和L-4-氯-2-氨基丁酸酯类盐酸盐的制备方法,通过优化合成工艺提高了生产效率,适用于工业化生产。 砜吡草唑合成过程中涉及多种关键中间体的制备。不完全统计显示,2024年至少有3家企业的5项砜吡草唑关键中间体制备专利获得授权。其中,山东润博生物科技(CN115536650B)和江苏七洲绿色化工(CN117229273B)的专利均涉及中间体3-[[5-(二氟甲氧基)-1-甲基-3-(三氟甲基)吡唑-4-基]甲基磺酰基]-5,5-二甲基-4H-1,2-噁唑的合成,但两者在反应条件和催化剂选择上有所不同。而润丰股份CN114716428B则聚焦于另一种中间体4-(((5,5-二甲基-4,5-二氢异噁唑-3-基)硫)甲基)-1-甲基-3-(三氟甲基)-1H-吡唑-5-醇的合成。 2024年唑啉草酯的中间体制备领域有5项专利获得授权,涉及不同企业的技术创新。例如,浙江中山化工(CN114181112B)开发了一种无需昂贵钯催化剂的2,6-二乙基-4-甲基苯基丙二腈合成方法;利尔化学(CN113321583B)以2,6-二乙基-4-甲基苯丙二腈为原料,通过有机溶剂中的酸催化醇解反应制备2,6-二乙基-4-甲基苯基丙二酸二酯,具有较高的收率和纯度。而颖泰嘉和(CN114907181B)通过连续化装置实现了中间体2,6-二乙基-4-甲基溴苯的高效、安全合成,传统间歇法中重氮盐累积带来的安全隐患。 2024年,氟噻草胺合成中间体的制备技术也取得了创新,多项相关专利获得授权。例如,北京颖泰嘉和(CN115043791B)针对核心前体2-甲砜基-5-三氟甲基-1,3,4-噻二唑的合成,采用微通道反应器实现连续化生产,显著提升了反应效率和安全性。黑龙江立科新材料(CN113666829B)则在起始原料4-氟-N-异丙基苯胺的合成上,通过优化反应条件和催化剂选择,大幅提高了收率和纯度。此外,大连奇凯医药(CN116041200B)对直接前体N-(4-氟苯胺)-2-羟基-N-异丙基乙酰胺的合成工艺进行了创新,解决了传统方法中高盐废水和收率低的问题。 本年度,除上述几个热门除草剂的中间体化合物合成制备上授权专利较多外,苯唑草酮、甲磺草胺、丙炔氟草胺、五氟磺草胺、苯嘧磺草胺等农药也分别有2-3项专利技术被最新授权。例如颖泰嘉和在甲磺草胺的中间体制备上取得了两项专利CN114634454B、CN114456122B,分别从合成路径优化和 硝化工艺创新两个角度,解决甲磺草胺中间体制备中的关键问题。利尔化学和山东京博农化各新取得一项授权专利——CN113045424B、CN113929582B,均针对丙炔氟草胺关键中间体——2-(5-氟-2-硝基苯氧基)乙酸酯的合成方法进行了创新优化。专利CN115028596B和CN118788251B分别针对苯唑草酮一种重要中间体和关键中间体3-[3-溴-2-甲基-6-(甲基磺酰基)苯基]-4,5-二氢化异噁唑,提供了不同的技术路线和工艺优化方案。 除草剂组合物/制剂专利 除草组合物专利是数量最多的授权类别,据世界农化网不完全统计整理,2024年有近百项除草组合物专利获得授权,显示出该领域的研发活跃度。 从具体农药成分来看,2024年获得授权的组合物专利中,砜吡草唑、草甘膦、草铵膦、精草铵膦、环庚草醚、精异丙甲草胺、丙炔氟草胺、氯氟吡啶酯等成为主要的复配研究成分。其中,砜吡草唑表现尤为突出,以该成分为核心的相关专利多达9项,主要涉及其与特丁津、甲磺草胺、嗪草酮、异丙隆、氨唑草酮、嘧硫草醚、吡氟酰草胺+噁草酮、唑嘧磺草胺、五氟磺草胺、双苯嘧草酮等的混配研究。这些组合物通过优化配比及助剂体系,充分发挥了协同增效作用,不仅延长了持效期,还显著提升了对不同环境条件的适应性,其应用场景广泛覆盖小麦田、大豆田以及抗草甘膦牛筋草的防治等领域。 此外,草甘膦的混配组合成分主要包括乙氧氟草醚、三氯吡氧乙酸、增甘膦、苯嘧磺草胺等;草铵膦的混配组合成分则以丙炔氟草胺、丙炔草酸为主;精草铵膦的混配组合成分涵盖双唑草酮、甲氧咪草烟、苯唑草酮、丙炔氟草胺+精异丙甲草胺等。这些混配组合均针对特定作物和杂草类型进行了优化,进一步拓展了除草剂的应用范围和效果。 从申请企业/专利权人来看,润丰股份在2024年取得了最多的除草剂组合物专利授权,共计14项。其专利权人包括母公司及旗下子公司宁夏汉润、山东润博、青岛润农等,涵盖了2甲4氯异辛酯、砜吡草唑、甲磺草胺、精异丙甲草胺、莠去津、敌稗及嗪草酮等数十种成分之间的二元/三元混配组合。部分组合还申请了不同剂型的专利,进一步增强了产品的市场竞争力。此外,巴斯夫基于环庚草醚与不同作用机理的除草剂进行复配研究,并于2024年取得了6项相关组合专利。江苏龙灯化学也取得了多项以丙炔氟草胺为主要成分之一的组合物专利,进一步丰富了该成分的应用场景。 值得注意的是,2024年一些新型专利化合物也有多项组合物专利取得授权,例如,江山股份开发的创制苯嘧草唑获得了基于该产品的可分散油悬浮剂及其制备方法专利(CN115281212B)。双唑草酮的组合专利除原研企业青岛清原外,江苏钟山新材料有限公司也取得了一项将精草铵膦与双唑草酮复配的组合物制备及应用专利。其他国内企业也在提前积极布局相关专利期农药的复配研究,例如,安徽众邦生物工程有限公司等多家企业在2024年取得了基于科迪华专利化合物氯氟吡啶酯的组合物专利,主要是将其与吡唑喹草酯、五氟磺草胺+丙草胺、五氟磺草胺+异恶草松、氰氟草酯+吡嘧磺隆等进行复配组合研究,进一步拓展了该化合物的应用范围。此外,日本石原开发的新型HPPD类除草剂Tolpyralate,江苏瑞邦取得了一项含Tolpyralate和甲磺草胺的除草组合物及其应用专利,复配后杂草防除谱优势互补,对玉米田阔叶杂草、禾本科杂草及莎草科杂草均表现出良好的防除效果。
  • 《印染废水处理站调试与运行》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-08-09
    • 印染厂自建的废水处理站由于年久失修或平时疏于管理又或处理原水水质变化,使得处理后水质无法达标。这时候重新调试成为有效的方法。本文记录了3600吨/天印染污水处理站流程规划,菌种培养,运行监测,实现达标排放的全过程。介绍了后续进行污泥焚烧,中水回用措施的实行。对目前印染企业废水处理具有一定的参考价值。 江门某染厂以针织布染色加工为主,地处谭江周边,随着GB4287-2012纺织染整工业水污染物排放标准落实与实施,染厂虽于2007年自建3600吨/天污水处理站,但至今十余年,冷却塔堵塞,流程不畅,污泥大量堆积。经常出现COD超标问题。作为污染源直接关系潭江流域水质处理站的正常运行显得紧迫而关键。 以上原因使得小工艺的更改已然无法实现,重新规划流程及工艺调试的才迅速有效,经过两个月的整改与一年时间的运营,经环保局在线监测,第三方取样测试均达标排放。 新工艺流程采用:调节池→混凝池→一沉池→水解酸化→好氧池→二沉池→出水口 将物化段与生化段区别开来,物化段为生化段提供合适PH值,相对稳定的COD,色度的水质,生化段通过微生物处理降低各项关键指标流程如图: 流程简介: 1、细格栅:采用机械格栅拦截废水中较大的杂物,避免提升泵堵塞; 2、调节池:调和水质,消减高峰负荷; 3、物化池:投加化学药剂,使废水出现矾花,起到混凝絮凝效果; 4、初沉池:废水泥水分离,大部分SS、色度、部分有机物在此得到去除; 5、水解池:去除有机物,在厌氧细菌作用下转化为小分子有机物或少量沼气; 6、爆气池:通过生物膜上好氧菌接触,在生物膜微生物作用下,污水得到净化; 7、污泥系统:初沉池及部分二沉池污泥排入污泥浓缩池,经浓缩后污泥泵泵入板框压泥机压缩成滤饼,外送填埋。