《2030年可再生制氢成本或降至1.4-2.3美元/kg》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-02-24
  • 目前,在全球范围内,价值链上有228个氢项目,85%的全球项目来自欧洲、亚洲和澳大利亚,美洲、中东和北非正在加速部署。此外,综合来看,预测显示,到2030年,可再生制氢成本可能降至1.4-2.3美元/kg。

    近日,国际氢能委员会(Hydrogen Council)发布《Hydrogen Insights: A perspective on hydrogen investment, market development and cost competitiveness》报告,北极星氢能网翻译摘要部分如下:

    在全球监管机构、投资者和消费者转向脱碳的背景下,氢能正吸引前所未有的关注和投资。在2021年初,已有超过30个国家发布了氢能路线图。工业界已宣布了200多个项目和雄心勃勃的投资计划,各国政府承诺提供超过700亿美元的公共资金。这种势头存在于整个价值链中,并正在加速氢气生产、传输、分销、零售和终端应用的成本降低。

    此外,自2020年以来,氢能理事会的成员从60个增加到100多个,目前在全球拥有超过6.6万亿的市值和超过650万的员工。

    本报告由氢能理事会和麦肯锡公司联合发布,基于行业真实数据,提供以事实为依据的,全面、定量分析,概述了氢能生态系统的发展,包括氢能解决方案、相关投资、氢能技术以及终端应用的成本竞争力。

    ▊全球正加速投资布局氢能项目

    目前,在全球范围内,价值链上有228个氢项目,85%的全球项目来自欧洲、亚洲和澳大利亚,美洲、中东和北非正在加速部署。

    在这些项目中有17个GW级项目(即可再生能源超过1GW,每年可产20万吨低碳氢),其中最大的项目在欧洲、澳大利亚、中东和智利。

    如果所有项目都能实现,到2030年,总投资将超过3000亿美元,相当于全球能源资金的1.4%。然而,目前只有800亿美元的项目可以被视为“成熟项目”,这意味着该投资要么处于规划阶段,要么已通过最终投资决策(FID),要么在建、已投产或正在运营。

    在公司层面上,氢能理事会成员计划到2025年将其总氢投资增加6倍,到2030年将增加16倍。他们计划将大部分投资用于资本支出(capex),其次是并购(M&A)和研发(R&D)。

    在政府财政和监管的支持下,全球向脱碳方向的转变正支撑这一势头发展。国内生产总值占据世界一半以上的75个国家有零碳发展目标,30个有氢能规划。

    各国政府已经认捐了700多亿美元,并列入了新的产能目标和部门级监管,以支持这些氢倡议。例如,欧盟宣布2030年40GW的电解槽产能目标(目前不足0.1 GW),20多个国家宣布了2035年前禁售燃油汽车。在美国,新车的联邦排放标准落后于欧盟,但加州和其他15个州的州一级倡议制定了雄心勃勃的目标,即到2035年乘用车和卡车达到零排放状态。中国2021年-2024年将用50亿美元支持燃料电池汽车发展,重点推动供应链本土化。

    ▊2030年可再生制氢成本可能降至1.4-2.3美元/kg

    随着GW级规模项目出现,制氢成本继续下降。可再生能源成本下降速度加快推动了可再生能源制氢成本下降,这缘于大规模部署和较低融资成本的推动。2030年的可再生能源成本可能比一年前的估计低15%。预计澳大利亚、智利、北非和中东等拥有最佳资源的地区降幅最大。

    但较低的可再生能源成本是不够的:对于低成本的清洁制氢,电解和碳管理的价值链需要扩大。这需要进一步加大公共支持力度,以弥合成本差距,发展低成本可再生能源能力,并扩大碳运输和储存场所。对于本报告中的成本预测,我们假设根据氢理事会的愿景,氢的使用将有一个雄心勃勃的发展。例如,对于电解制氢,我们假设到2030年部署90 GW。

    这种规模化将推动电解槽价值链的快速工业化。该行业已经宣布电解槽容量将增加到每年超过 3 GW,并需要迅速扩大规模。这种规模化可以推动系统成本以超此前预期的速度下降,到2025年达到480-620美元/kW,到2030年达到230-380美元/kW。系统成本包括设备的堆放和平衡,但不包括运输、安装和装配、建筑成本和任何间接成本。

    可再生能源制氢的大规模部署将需要开发GW规模的制氢项目。这种专门建设可再生能源的项目可以通过合并多种可再生能源(如陆上风能和太阳能光伏发电的联合供应)并在此之上建设电解槽来提高利用率。

    综合来看,预测显示,到2030年,可再生制氢成本可能降至1.4-2.3美元/kg。(这一范围是由于最佳区域和平均区域之间的差异造成的)。这意味着到2028年,新的可再生能源和灰色氢气供应可能在最佳区域达到成本平价,2032-2034年在平均区域达到成本平价。

    利用天然气生产低碳氢气的技术也在不断发展。随着二氧化碳捕获率的提高和资本支出要求的降低,低碳制氢是一个强有力的互补生产途径。如果大规模开发碳运输和储存场所,到本世纪末,低碳氢气可能与灰色氢气实现收支平衡,成本约为每吨二氧化碳35-50美元。

    ▊2030年,氢气全球运输成本将低于2-3美元/千克

    随着制氢成本的下降,输配成本是降低氢成本的下一个前沿领域。从长远来看,氢气管道网络提供了最具成本效益的分配方式。例如,管道可以仅花费输电线路1/8的成本传输10倍的能量,资本支出成本与天然气相似。该行业可以部分再利用现有的天然气基础设施,但即使是新建的管道,成本也不会太高(假设泄漏和其他安全风险得到妥善解决)。例如,我们估计,通过管道将氢气从北非运输到德国中部的成本约为每千克氢气0.5美元,低于这两个地区本地可再生氢气生产的成本差异。

    从短期到中期来看,大规模清洁氢气应用中最具竞争力的设置包括在现场或附近同时进行制氢。然后,利用这种规模化生产向附近的其他氢气用户(如卡车和火车加油站)和较小的工业用户供应燃料。用卡车运送燃料给这些用户通常是最具竞争力的配送方式,每公斤氢气的成本低于1美元。

    对于长距离的船上运输,氢气需要转换以增加其能量密度。虽然存在几种潜在的氢载体方法,但三种碳中性载体——液态氢(LH2)、液态有机氢载体(LOHC)和氨气(NH3)——正在获得最大的吸引力。成本最优的解决方案取决于目标最终用途,决定因素包括集中燃料和分布式燃料,再转化的需要和纯度要求。

    从规模上看,到2030年,国际分销的总成本可能达到2-3美元/千克(不包括生产成本),其中转换和再转换所需的成本占最大份额。例如,如果目标最终应用是氨,运输成本仅增加0.3-0.5美元/kg的总成本。如果目标最终应用是液态氢或高纯度要求的氢,作为液态氢运输可能仅增加1.0-1.2美元/千克,从港口进一步分销的额外利益。这些成本水平将促成全球氢气贸易,将日本、韩国和欧盟等未来主要需求中心与中东和北非(MENA)、南美或澳大利亚等拥有丰富低成本氢气生产手段的地区联系起来。与制氢一样,氢气运输也需要大量的初始投资,适当的监管框架,以在第一个十年内弥合成本差异。

    ▊氢能在22种终端应用中具有竞争力

    从总体拥有成本(TCO)的角度(包括制氢、分销和零售成本)来看,氢能是22种终端应用中最具竞争力的低碳解决方案,包括长途卡车运输、航运和钢铁。然而,纯TCO并不是唯一驱动因素:未来对环境法规的期望、客户的需求和相关的“绿色溢价”,以及ESG合规投资的较低资本成本都将影响投资和购买决策。

    在工业中,较低的制氢和配氢成本对成本竞争力尤为重要,因为它们占总成本的很大一部分。未来十年,炼油有望转向低碳氢气。对于肥料生产,到2030年,使用可再生能源生产的绿色氨在欧洲应具有成本竞争力,欧洲生产的灰色氨每吨二氧化碳的成本不到50美元。钢铁是最大的工业二氧化碳排放源之一,亦可能成为成本最低的脱碳应用之一。通过使用废钢和氢基直接还原铁(DRI)的优化设置,到2030年,绿钢的粗钢成本仅为515美元/吨,或每吨二氧化碳溢价45美元。

    在运输方面,较低的氢供应成本将使大多数道路运输部门在2030年之前在不考虑碳成本的情况下与传统方案竞争。在电池技术迅速发展的同时,燃料电池电动汽车(fcev)正在成为一种补充解决方案,特别是在重型卡车和远程领域。在重载长距离运输中,如果在泵处以每千克4.5美元的价格提供氢气(包括氢气生产、分配和加油站成本),FCEV方案可在2028年实现柴油盈亏平衡。此外,氢气燃烧(H2 ICE)在功率和正常运行时间要求非常高的领域提供了一种可行的替代方案,包括重型矿用卡车。

    同样,氢在火车、航运和航空领域也在不断发展。到2030年,清洁氨作为运输燃料将是集装箱运输脱碳的最具成本效益的方式,与重质燃油(HFO)实现收支平衡,每吨二氧化碳的成本约为85美元。航空业可以通过氢和氢基燃料实现具有竞争力的脱碳。航空工业可以通过LH2直接对中短程飞机进行最具竞争力的脱碳,成本为每吨二氧化碳90-150美元。根据所选的二氧化碳原料,远程飞机可以使用合成燃料进行最具竞争力的脱碳,成本约为每吨二氧化碳200-250美元。

    建筑和电力等其他终端应用将需要更高的碳成本才能具有成本竞争力。然而,随着大规模和长期解决天然气管网脱碳问题,它们仍将看到强劲的势头。例如,在英国,多个具有里程碑意义的项目试点正在将氢气混合到天然气管网中,用于住宅供暖。氢气作为一种备用电源解决方案,尤其是在数据中心等高功率应用中,也越来越受到重视。

    ▊实现:抓住氢的希望

    在财政支持、监管和明确的氢气战略和目标的支持下,政府对深度脱碳的坚定承诺,在氢气行业引发了前所未有的势头。现在需要保持这一势头,并制定长期监管框架。

    这些雄心勃勃的战略现在必须转化为具体措施。政府应在企业和投资者的投入下,制定部门一级的战略(例如钢铁脱碳战略),制定长期目标、短期里程碑和必要的监管框架,以实现过渡。该行业必须建立设备价值链,扩大制造规模,吸引人才,建立能力,并加快产品和解决方案的开发。这种规模的扩大将需要资金,投资者将在发展和推动规模经营方面发挥巨大作用。所有这些都需要新的伙伴关系和生态系统建设,企业和政府都将发挥重要作用。

    为了开始工作,战略应该针对关键的“解锁”,比如降低氢气生产和分配的成本。我们估计,在理想条件下,需要大约65 GW的电解规模才能使成本与灰色氢气达到收支平衡,这意味着这些资产的资金缺口约为500亿美元。在扩大碳运输和储存、氢运输、分销和零售基础设施以及终端应用方面也需要支持。

    支持部署的一个地方是发展以大型氢气承运商为核心的集群。这将推动设备价值链的规模化,降低制氢成本。通过合并多个承购商,供应商可以分担投资和风险,同时建立积极的强化循环。在这些集群附近的其他较小的氢气承购商可以依靠较低成本的氢气供应,使他们的运营更快地实现盈亏平衡。

    我们看到有几种集群类型越来越受欢迎,包括:

    -用于燃料加注、港口物流和运输的港口区域

    -支持精炼、发电、化肥和钢铁生产的工业中心

    -资源丰富国家的出口中心

    成功的集群将可能涉及整个价值链的参与者,以优化成本,挖掘多种收入来源,并最大限度地利用共享资产。它们应向其他参与者开放,基础设施应允许在可能的情况下随时访问。

    未来几年将对氢生态系统的发展、实现能源转型和实现脱碳目标起决定性作用。如本报告所示,过去一年的进展令人印象深刻,势头空前。但未来还有更多机遇与挑战。

  • 原文来源:http://www.cnenergynews.cn/
相关报告
  • 《2025年制氢平准化成本展望:可再生氢难降至1美元/千克》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-12-31
    • 根据最新展望,2025年制氢的平准化成本(LCOH2)不太可能降至1美元/千克。受电解槽成本上升和通胀影响,LCOH2预计将持续较高。即使在中国,这一成本在2030年也将保持在2.50美元/千克以上,2050年则降至1.60美元/千克。展望指出,只有在2030年之后,可再生氢才可能在少数市场上与灰氢竞争。中国因碱性电解槽成本较低,在所有建模市场中LCOH2仍然最低。然而,即使在成本最具竞争力的中国和印度,可再生氢也需在2030年之后才能与灰氢相媲美。 对于依靠光伏、风电和电池运行的离网系统,60%-80%的电解槽利用率被视为最优水平。若要达到90%的近基本负荷利用率,成本将增加约4%-35%。电力成本在LCOH2中占据重要地位,导致日本等可再生能源成本高昂的市场在绿氢生产上难以具备竞争力。 整体而言,除非电解槽成本取得显著突破,否则可再生氢作为脱碳战略的吸引力将受到限制。
  • 《可再生能源制氢:理想很丰满》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-10-15
    • 被称为“未来能源”“终极能源”的氢能已经成为近两年的一个热门话题,在国际上,美国、欧盟、日本都出台了相应的氢能战略规划,日本甚至提出了“氢能社会”的宏大构想;在国内,中石油、中石化、国家能源集团、国家电投等能源央企纷纷入局氢能产业链,多个地方政府出台了氢能发展方案和扶持政策。 随着“2060年碳中和”任务的提出,氢能似乎成为实现终端燃料脱碳的最终解,又增添了其讨论的热度。那么,我国的氢能发展到什么程度了?制氢和用氢将分别向什么方向发展?氢能将在未来能源体系中担任什么角色?本文将尝试对这些问题作出解答。 01 可再生能源制氢:理想很丰满 氢能产业链包括制氢、储氢、运氢、用氢几个环节。当前我国氢气总产能达到2500万吨/年,是全球氢气产能最大的国家。 氢是一种清洁高效的二次能源,无法直接从自然界中获取,必须通过制备得到。目前主流制氢路线中,煤炭、天然气等化石燃料制氢是当前国内成本最低的制氢路线,其中煤制氢成本可低至 9-11元/公斤 ,比天然气制氢成本低约30%;钢铁、化工等行业的工业副产气制氢也是较为成熟的手段,综合成本在10-16元/公斤,我国工业副产氢还有较大利用空间,可以在提供就近氢源的同时提高资源利用率,但建设地点受限于原料供应;电解水制氢作为新兴的热门方向,项目经济性直接受电价影响,市电生产的成本约30-40元/公斤,一般认为当电价低于0.3元/千瓦时时,电解水制氢的成本才能接近传统化石能源制氢。 不论是国内还是国外,目前电解水占所有制氢方式的比重仅为3%-5%左右,但却是专家学者和业内人士眼中未来最重要的制氢途径,特别是可再生能源电力制氢。这是由于不论是化石燃料制氢、工业副产氢还是传统电解水制氢,都存在生产过程中的碳排放问题,在碳捕集与封存装置(CCS)不具备大规模推广可能性的前提下,可再生能源电力制氢是唯一能实现全周期零碳排放的制氢方式。 在中国氢能联盟发布的《氢能源及燃料电池白皮书》中,预测随着我国能源结构由化石能源为主转向以可再生能源为主的格局,氢气供给结构中可再生能源电解水的比例也将大幅增长,到2050年占比70%。 中国氢气供给结构预测 来源:中国氢能协会 当前国家政策层面,虽没有出台针对性支持政策,但是在促进可再生能源消纳相关文件中提到电制氢途径。《清洁能源消纳行动计划(2018-2020年)》指出“探索可再生能源富余电力转化为热能、冷能、氢能,实现可再生能源多途径就近高效利用”。国家能源局2020年5月发布的《关于建立健全清洁能源消纳长效机制的指导意见(征求意见稿)》也提到了“清洁能源富集地区,鼓励推广电采暖、电动汽车、港口岸电、电制氢等应用,采取多种措施提升电力消费需求,扩大本地消纳空间”。 项目实践层面,已经有数个落地案例。国内首个风电制氢工业应用项目——河北沽源风电制氢综合利用示范项目于2019年投产,项目包含200MW风电场、10MW电解水制氢系统。2019年7月,阳光电源与晋中市榆社县政府签订300MW光伏和50MW制氢综合示范项目,9月与山西省长治市举行200MW光伏发电项目(一期)开工暨二期500MW光伏制氢项目签约仪式。水电大省四川已出台多项相关支持政策,但目前尚未有水电制氢项目落地。整体来说,可再生能源制氢项目主要为科技项目试点示范。 可再生能源制氢的优点似乎显而易见,一方面随着可再生能源大规模推广,电价将会明显降低,可进一步降低制氢成本;另一方面可再生能源制氢有利于清洁能源消纳,将弃风弃光等可再生能源电力以氢能的形式存储下来,可解决电力供需的大规模季节性不平衡问题,助力高比例可再生能源电力系统的调峰问题。 但是,可再生能源制氢要实现大规模发展,还有诸多问题需要解决: 一是近年来我国弃风弃光现象已经得到明显好转,容易出现电解设备利用率低、无法收回投资的情况。近年来,国家出台了多项措施促进清洁能源消纳,并明确表态到2020年基本解决弃风弃光弃水问题。2019年我国弃风率4%,弃光率2%,连续几年实现双降。弃风弃光制氢理论上既是一种有效的电力调峰手段,又能降低制氢成本,但由于弃风弃光的尖峰特性,将导致制氢设备利用小时数低,分摊到每公斤氢的投资相关成本高昂。 二是现阶段电解水制氢的成本仍然较高,即使随着风电光伏的技术进步和规模效应降低到发电端“一毛钱一度电”,但加上输配电价、政府性基金及附加、辅助服务成本之后,终端电价相比其他制氢方式仍不具备成本优势。且在降电价过程中,过低的上网电价、输配电价会对发电企业和电网企业收益造成明显损害,难以实现多方合作。 三是制氢还需要配套的氢气储运和下游产业需求,否则产生的氢气无法最终转化为经济效益。即使制氢成本得到大幅降低,在经过储存、运输多个环节层层叠加后终端氢气价格仍较高,只有当氢气大规模储存、运输等技术瓶颈得到解决,且下游需求如氢燃料电池得以激发的情况下,大规模制氢才可以实现商业模式上的闭环。 四是从储能的角度出发,储氢的效率、成本等各方面均无法与其他常规储能方式相竞争。“可再生能源制氢-氢气储存-燃料电池发电”听起来是零碳利用的完美途径,但电-氢-电两次能源转化综合效率只有30%-40%。对比现在技术路线较为成熟的电化学储能效率80%-90%,抽水蓄能效率75%,即使储氢具有存储规模大、不受地理环境制约的优点,其成本、效率、响应速度和安全性都是制约发展的硬伤。 02 氢燃料电池汽车:政策曙光已现 正如前文所述,我国当前已具备较高的制氢能力,但在消费端,90%以上的氢气仍然作为工业原料,用于合成氨、合成甲醇、炼油、煤炭深加工等,氢的“能源化”利用历史较短,其中最受关注的便是氢燃料电池汽车的发展。 氢燃料电池汽车的优点在于清洁环保、能量密度高、续航里程远、加氢时间短(只需3-5分钟),但成本高昂、加氢站数量少等因素制约了其进一步发展。经过多年发展,纯电动汽车产业链已经较为成熟,进入规模化商业化发展阶段,而氢燃料电池汽车仍处于试点示范阶段。截至2020年7月,我国累计推广燃料电池汽车超过7200辆,建成加氢站约80座。 2015-2019氢燃料电池销量统计 全球来看,2019年全球氢燃料电池汽车销量创下历史新高,达到10409辆,销量最高的韩国突破4000辆,其次分别是中国、美国和日本。品牌方面,自日本丰田于2014年推出第一代商用燃料电池汽车Mirai后,本田Clarity、现代Nexo几款车型均已实现商业化量产,日韩品牌在燃料电池乘用车市场上占据绝对优势。 我国燃料电池汽车以客车、货车为主,应用在公交、物流等领域,这也与燃料电池续航里程长的特点相适应。公交车一般由政府集中采购,广东佛山、河北张家口燃料电池公交车数量均超过百辆,北京、山西大同、湖北武汉等地也纷纷加大了燃料电池公交车的投放力度。相比乘用车,公交车路线固定,一个加氢站可满足一批车的加氢需求,利用效率更高。 目前阶段,氢燃料电池汽车用车成本仍居高不下。据测算,纯电动汽车百公里电费约为6元~15元,燃油车百公里油费约为50元,而氢燃料电池车燃料费用高达100元。成本问题是制约燃料电池汽车行业发展的关键因素。如何才能降成本?根据国际氢能协会发布的《氢能平价之路》,到2030年大型乘用车的总体拥有成本可能下降45%,主要来自于扩大产量带来的规模效应、增加加氢站降低的运输成本、使用可再生能源降低的制氢成本。 来源:国际氢能委员会 氢燃料电池汽车的发展越来越得到政府重视和政策支持。自2019年政府工作报告中首次提及“推动充电、加氢等设施建设”,近两年间各地密集出台氢燃料电池汽车发展规划。9月21日,财政部、工信部、科技部、发改委、国家能源局等五部委联合发布了《关于开展燃料电池汽车示范应用的通知》,对 2020 年开始的 4 年示范期的氢燃料电池支持政策进行了初步明确。 下一阶段,燃料电池汽车的政策方向是采取“以奖代补”方式,对符合条件的城市群开展燃料电池汽车关键核心技术产业化攻关和示范应用给予奖励。根据中金公司测算,不同车型奖励金额上下限差异较大,重卡的奖励总金额与单位功率奖励金额均高于其他品类,有一定强化引导作用;关键零部件在示范期内补贴金额总体不变,有望强化头部企业实力。 我们认为,该政策出台后将在氢能发展基础好、财政实力强、有产业链优质企业的地区形成龙头聚集效应,接下来10年将是氢燃料电池汽车突破技术瓶颈、实现规模化发展的关键时期,氢燃料电池将与电动汽车实现差异化发展,在不同的应用场景下发挥作用,共同推进我国新能源汽车行业更上层楼。 03 能源转型中的氢能:受重视但不是最关键要素 纵观人类能源转型历史,可以发现从高碳到低碳、从低密度到高密度转变的明显趋势。人类学会用火标志着薪柴时代的开始,第一次工业革命伴随着煤炭的大量使用,石油的开采极大推进了现代文明,而我们现在正处在大规模可再生能源替代化石能源的转换期,那么下一次能源革命,会是更加清洁高效的氢能时代吗? 在中国氢能联盟公布的《中国氢能源及燃料电池产业白皮书》中,预测到2050年氢能在中国能源体系中的占比约为10%。而根据最近发布的BP世界能源展望(2020版),在低碳转型的迫切要求下,传统能源品种将在很大程度上被低碳能源代替,主要指的是大规模的电能替代和小比例的氢能替代。预计到2050年,电能在终端能源消费中的占比将达到50%(快速转型情境下)-60%(净零排放情境下),而氢能则为7%(快速转型情境下)-16%(净零排放情境下)。随着技术和原料成本的下降、碳价的上涨,氢能在强调低碳的情境下会逐步具有竞争力,与之相反,在一切如常(Business as usual)情境下,氢能的发展空间则非常有限。 左图:电能和氢能在终端能源消费中的比重预测 右图:不同情境下终端能源消费结构预测 来源:BP 同样作为二次能源,电能的利用范围要比氢能广得多,必将成为能源转型的主要载体,而氢能的一个额外优势在于可以用作工业领域中需要高温燃烧场景的燃料,部分实现对化石燃料的替代,从而实现减排效益。电能可以将氢气作为载体,通过氢冶金、电氢合成氨尿素等工艺实现对传统工业的重构。 综上所述,在制氢环节,可再生能源制氢在技术和经济上均不具备足够的可行性和竞争力;在用氢环节,氢燃料电池汽车在乘用车方面难以匹敌电动车,将主要向重卡等长距离运输领域发展;而在低碳转型的背景下,尤其是总书记提出“力争在2060年实现碳中和”的环境下,氢能将比以往发挥更大作用,但难以成为转型的主要支撑和中坚力量。 氢能产业链的培育,需要政策、市场、技术多方面力量的有效协同和共同努力,虽然还有很长的路要走,但正如哈佛大学《中国的氢经济即将来临吗?》报告中所说:如果中国政府能够在氢能价值链上投入全部的制造和政策力量,就将成为一个真正的游戏规则改变者,并对整个世界产生连锁效应。