《KIT计划在太空中进行气候研究》

  • 来源专题:大气污染防治与碳减排
  • 编译者: 李扬
  • 发布时间:2023-11-27
  •     欧洲航天局(ESA)已选择卡尔斯鲁厄理工学院(KIT)的概念进行大气层变红外层析成像(CAIRT)卫星任务,作为地球观测任务的剩余两个候选者之一。该行动的最终决定将在2025年做出。

       KIT气象与气候研究所的Bj?rn-Martin Sinnhuber教授解释表示,他正在协调科学工作。“如果欧空局最终选择我们的提案,我们应该能够在2030年代初获得数据。届时,CAIRT可以作为ESA Earth Explorer 11卫星发射到轨道上。该任务的目的是获取有关地球大气层变化的数据。预计这将提高对大气环流、大气的确切成分和区域气候变化之间联系的理解。

       CAIRT的核心是成像红外光谱仪,以前所未有的空间分辨率测量大量痕量气体、气溶胶和大气波。CAIRT将定期测量红外范围内5公里至115公里高度的大气层,水平分辨率约为50公里乘50公里,垂直分辨率为1公里。

  • 原文来源:https://www.meteorologicaltechnologyinternational.com/news/climate-measurement/kit-plans-climate-research-in-space.html
相关报告
  • 《新闻:世界气候研究计划在气候科学领域的进展和挑战》

    • 来源专题:青藏高原所信息监测服务
    • 编译者:王婷
    • 发布时间:2016-05-17
    • Co-sponsored by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, the World Climate Research Research Programme (WCRP) has worked since its creation in 1980 to facilitate analysis and prediction of Earth system variability and change. Its Joint Scientific Committee meets annually to provide scientific guidance. From 25 to 27 April 2016, the WCRP Joint Scientific Committee held its 37th Session in Geneva, Switzerland. WCRP seeks to achieve two main objectives: determine the predictability of climate as well as the effects of human activities on climate, and use this information in a wide range of practical applications of direct relevance, benefit and value to society. The programme – motivated by the demand for improved understanding of climate – encompasses studies of the global atmosphere, oceans, sea and land ice, and the land surface, which together constitute the Earth’s physical climate system. The 37th Session of the WCRP Joint Scientific Committee presented an update on the actions taken since the 36th Session (2015). Reports on the major activities were also presented throughout the meeting, notably on WCRP’s five core projects: •CLIVAR (Climate and Ocean: Variability, Predictability and Change): understanding the dynamics, interaction, and predictability of the coupled ocean-atmosphere system; •SPARC (Stratosphere-troposphere Processes And their Role in Climate): promoting and facilitating international research activities on how chemical and physical processes in the atmosphere interact with a changing climate; •CORDEX (Coordinated Regional Climate Downscaling Experiment): coordinating global partnerships to advance the science and application of regional climate downscaling, that is to say projections of climatic changes; •GEWEX (Global Energy and Water cycle Exchanges): observing, understanding, and modelling the hydrological cycle and energy fluxes on the Earth’s atmosphere and surface; •CliC (Climate and Cryosphere): improving understanding of the cryosphere – Earth’s surface where water is in a solid form – and its interactions with the global climate system, and enhancing the ability to use parts of the cryosphere for detection of climate change. An important issue on the 37th session of the Joint Scientific Committee, the increasing demand for regional climate information calls on the WCRP to revitalize its regional activities. As an entity largely focused on climate issues that transcend national boundaries and require multinational and multidisciplinary approaches, WCRP seeks in-depth understanding of regional processes in a context that will help develop knowledge transferable to similar regions and allow upscaling of the information to global levels. The Committee entertained discussion on a proposal to create a WCRP Regional Advisory Council (WRAC) to oversee regional activities across the programme, promote its activities in regions, and serve as an interface to external partners. Emerging scientific questions, or “Grand Challenges”, tackled by the programme – such as sea level change, extreme weather events, water availability and melting ice –, constitute areas of emphasis in scientific research, modelling, analysis and observations for WCRP and its affiliate projects in the coming decade. WCRP intends to promote them through community-organized workshops, conferences and strategic planning meetings as well as to advocate further for international partnership and coordination. The Session concluded with an overview of the main actions and recommendations to be implemented. Reaffirming its mission, WCRP highlighted the need to enhance the relevance of climate science to society as well as to build capacity on both regional and global scales to sustain the climate community, particularly through a strategic approach based on key partnerships. WCRP is co-sponsored by the World Meteorological Organization, the International Council for Science, and since 1993 by IOC-UNESCO. The Joint Scientific Committee consists of scientists selected by mutual agreement between the three sponsoring organizations, representing climate-related disciplines in atmospheric, oceanic, hydrological and cryospheric sciences.
  • 《美航空航天局关于在太空中建造核反应堆及下一步计划》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-07-27
    • 今年早些时候,美国能源部(DOE)向三家公司授予了三份合同,每份合同价值约为500万美元,以获得可部署到月球的核裂变表面动力系统的设计方案。根据美国国家航空航天局的说法,这样的技术可以在本世纪末部署到月球。 能源部合同所授予的资金将用于开发一个40千瓦的裂变动力系统的初步设计概念,该系统应能在月球的恶劣环境中至少持续10年。洛克希德-马丁公司、西屋公司和IX公司是被选中的合同公司,这三家公司都将与其他公司合作进行设计开发。 由于核裂变系统相对较小且重量轻,它们是月球环境的理想选择。它们也可以可靠地发电,而不依赖于地点、可用的阳光和其他自然条件。如果这种技术被成功开发和部署,可以为前往月球、火星和其他地方的长期任务铺平道路。 美国国家航空航天局格伦研究中心的裂变表面电源项目经理托菲尔就相关问题与媒体进行了互动。 地球上的核反应堆通常被放置在大型安全壳建筑内,但对月球上反应堆的描述似乎没有这样的结构。这其中的原因是什么? 托菲尔:月球上的反应堆确实有安全壳,但它比陆地上的反应堆所需要的要小得多。一个典型的陆地核反应堆可产生1000兆瓦的能量,而月球反应堆将产生40千瓦,或0.04兆瓦。由于月球反应堆包含的核材料要少得多,其结构(包括安全壳和屏蔽)要比典型的地球反应堆所需的结构小得多。 安全是美国宇航局在地球上和太空中开展的每项活动的核心原则,安全被纳入空间核动力系统的设计、测试、制造和运行的每个阶段。月球系统设计将提供与适用于地面系统相同的保护和安全标准。 在这样的反应堆被部署到月球之前,需要克服的最大挑战是什么? 托菲尔:一个挑战是,向月球的发射和上升包括强烈的振动和冲击,因为火箭级在燃烧其燃料后分离。一个空间反应器必须有一个坚固耐用的结构、电子器件、通信设备和电力转换设备的设计,以便在发射环境中生存。在月球表面运行的另一个挑战是拒绝反应堆产生的动力处理热量。像地球上使用的水或空气冷却系统在月球上是不可能的。 相反,NASA将需要热辐射器,通过将废热排入太空来冷却反应堆。这与国际空间站上用于管理热量的过程相同。最后,另一个挑战是在离地球25万英里的地方操作发电厂,必须开发和测试自主控制系统,以确保安全运行和故障检测。所有这些挑战都是可以解决的,并将通过详细的设计和测试活动予以克服。 与地球上的核泄漏相比,在太空中处理核泄漏的难度会大多少? 托菲尔:这种情况发生的可能性极小。安全分析将包括所有方面,包括系统的正常和非正常运行阶段。美国宇航局非常重视安全问题,安全问题被整合到空间核动力系统的设计、测试、制造和运行的每个阶段。 这包括电力系统内的几层保护功能,以最大限度地减少运行期间发生故障的可能性,以及一旦发生故障的备用安全控制。例如,月球表面裂变动力系统将有冗余的控制措施,以检测故障并在其运行变得关键之前关闭反应堆。控制子系统将有主动和被动的措施,以确保反应堆核心可以恢复到亚临界状态,并确保反应堆燃料始终在稳定的温度下运行。 月球上波动的环境温度将对这种反应堆的工作产生什么影响? 托菲尔:系统热管理设计考虑到了月球表面环境温度的波动。散热板被用来在整个操作温度范围内将废热排入太空。热辐射板的尺寸将被设计成能够处理最极端的月球条件。