《Cell | DGK5介导的PA爆发的双重磷酸化调控植物免疫中的ROS》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-01-20
  • 2024年1月19日,美国密歇根大学/德州农工大学单立波和何平团队在Cell发表了题为Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity的研究论文。

    PA 和 ROS 是介导植物中各种信号转导过程的重要细胞信使。在免疫诱发过程中,PA 的平衡如何受到严格调控并与 ROS 信号交织在一起仍是一个谜。

    在这篇文章中,科研人员报告拟南芥 DGK5 调控 PTI 和 ETI。PRR 相关激酶 BIK1 会使 DGK5 在 Ser-506 处磷酸化,导致 PA 快速迸发并激活植物免疫,而 PRR 激活的细胞内 MPK4 会使 DGK5 在 Thr-446 处磷酸化,从而抑制 DGK5 的活性和 PA 的产生,导致植物免疫减弱。PA 与 NADPH 氧化酶 RBOHD 结合并使其稳定,从而调节植物 PTI 和 ETI 中 ROS 的产生及其增效作用。科研人员的数据表明,PRR 激活的 BIK1 和 MPK4 对 DGK5 的不同磷酸化平衡了细胞 PA 迸发的平衡,而 PA 迸发调节 ROS 的产生,协调植物免疫的两个分支。

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867423014046
相关报告
  • 《微生物所研究发现植物免疫途径钙信号解码调控新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-24
    • 钙离子是真核生物重要的第二信使分子,参与调控众多的细胞生物学活动和过程。细胞内钙离子的浓度在感应外界信号后发生时空变化,编码特征性的钙信号,经钙感应分子解码并调控细胞反应。当受到病原微生物侵染时,植物利用细胞膜和细胞内免疫受体感知微生物来源的信号,激活钙离子通道促进钙内流。多种类型的钙感应蛋白参与识别特征性的钙信号,激活细胞免疫反应。目前对植物解码免疫相关钙信号的机制了解相对匮乏。   张杰研究组发现了植物免疫过程中钙信号感知和解码的新调控机制。大丽轮枝菌是一种典型的土传性真菌病原,宿主范围广、致病性强、变异快。其侵染诱导植物细胞内钙离子浓度上升。CBP60g是植物特有的钙调素结合蛋白家族成员,响应病原侵染后在转录水平诱导,作为转录因子调控多个免疫信号途径(病原相关分子模式触发的免疫/PTI、效应子触发的免疫/ETI和水杨酸/SA)中众多基因的表达,是免疫信号途径中的核心转录因子。张杰研究组前期发现大丽轮枝菌通过分泌蛋白SCP41干扰CBP60g转录因子活性,抑制植物免疫从而促进致病性(Qin et al., 2018 eLife),提示钙信号可能在植物对大丽轮枝菌免疫识别中发挥功能。本研究发现大丽轮枝菌来源的病原相关分子模式(PAMPs)可诱导植物钙调素结合蛋白CBP60g磷酸化,该磷酸化的诱导依赖于钙通道蛋白及其上游激酶。钙调素/类钙调素(CaM/CML)、钙依赖的蛋白激酶(CDPK/CPK)、类钙调磷酸酶B及其互作蛋白激酶(CBL-CIPK)是植物中三种主要的钙感应蛋白。其中类钙调素TCH3和CPK5均参与PAMP诱导的CBP60g磷酸化。CPK5属于自抑制型的钙依赖蛋白激酶,TCH3结合CPK5,促进CPK5对CBP60g磷酸化,正调控植物对大丽轮枝菌的抗性。研究发现了不同类型钙感应分子之间的协同调控新模式,证明了免疫激活过程中CBP60g转录和翻译后水平的双重调控,揭示了植物细胞解码钙信号激活免疫反应的新调控机制。   该成果于2022年7月21日在线发表于国际知名期刊The Plant Cell(https://doi.org/10.1093/plcell/koac209)。张杰研究组的助理研究员孙丽璠为论文第一作者,张杰研究员为通讯作者。此项研究得到了国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项(B类)培育项目、以及中国科学院青年创新促进会的资助。
  • 《植物如何实现精准免疫调控?我国成果登《自然》》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-05-17
    •     水稻是主粮,是国家安全的基础。5月15日,记者从中国科学院分子植物科学卓越创新中心了解到,中国水稻生产主要面临的挑战包括:一、水稻生长过程中常常受到稻瘟病等病原真菌的侵扰,过度依赖化学农药,从而对环境和食品安全构成严重威胁。二、水稻对磷、氮等营养元素的巨大需求,导致过度施肥,严重污染环境。因此,深入探索水稻免疫和共生的机制,提高作物抗病性和营养吸收是农作物育种的重要方向之一。值得注意的是,促进水稻营养吸收和生长的丛枝菌根菌,与对水稻造成毁灭性病害的稻瘟病菌均属于真菌界。它们的细胞表面都覆盖着一种名为几丁质的多聚糖类物质。那么植物又是如何区分有益还是有害微生物的呢?原来长短有别。短链几丁质可以作为共生信号,而长链几丁质则会触发植物的抗病免疫反应。在建立互惠互利共生关系时,共生菌根真菌会释放大量短链几丁质作为信号,通知植物为建立共生关系做准备。而病原菌则会极力避免几丁质分子的泄露,尤其是长链几丁质,以免被植物识别并激活免疫反应。水稻细胞表面的关键受体蛋白OsCERK1能够辨别免疫或是共生信号,特异介导植物的共生或免疫反应。但这也需要一定监管,若受体OsCERK1触发的免疫反应失控,将引发过度的免疫反应,虽然对病原体的抵抗增强了,但也阻碍了植物生长和与互惠菌根共生的建立。关于水稻体内如何有效调控这种潜在的过度激活的免疫反应,长久以来一直是科研界尚待揭晓的谜团。     由OsCIE1介导的泛素蛋白“制动器”调控OsCERK1共生产量/免疫平衡的机制示意图。受访者 供图北京时间5月15日,中国科学院分子植物科学卓越创新中心王二涛团队、张余团队以及何祖华院士团队在水稻免疫机制研究上取得了重大突破。该成果以“Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice(水稻通过释放泛素制动器来激活由OsCERK1介导的免疫反应)”为题,在国际顶级学术期刊《自然》上发表,为深入理解植物如何巧妙使用免疫系统这把双刃剑协调抗病、共生和生长的平衡奠定了理论基础。研究发现了一种名为OsCIE1的调控蛋白能够束缚OsCERK1激酶活性。在无病原菌侵染的时期,OsCIE1能够像“紧箍圈”一样,将一种名为泛素的小蛋白分子连接到OsCERK1蛋白表面,抑制OsCERK1的激酶活性,防止免疫过度激活。然而,当水稻面临病原真菌入侵时,真菌细胞壁上的长链几丁质迅速诱导OsCERK1的激酶活性。该激酶将磷酸基团分子添加至OsCIE1蛋白表面的关键区域,抑制OsCIE1限制OsCERK1的能力,从而解除“紧箍圈”的束缚。此时,免疫信号通路被OsCERK1成功激活,启动植物免疫反应,抵抗病原菌的侵染。科研人员通过合作利用结构生物学方法,精确鉴定了控制OsCIE1“紧箍圈”松紧的关键位点Ser237。当Ser237位点被OsCERK1磷酸化修饰时,如同紧箍咒失效,OsCERK1便可展现其威力,积极抵御外敌。而一旦Ser237位点未被磷酸化,紧箍咒再次发挥作用,OsCERK1则恢复平静。抵御外敌的同时,OsCERK1控制水稻菌根共生的建立,使丛枝菌根真菌进入植物根系,并利用其发达的菌根网络协助水稻更高效地吸收磷、氮等关键营养物质,促进水稻的生长发育。因此,该研究揭示了OsCIE1这一“紧箍圈”,及其“咒语”Ser237磷酸化位点,在植物免疫和共生中的作用,不仅阐明了植物协同调节免疫、共生和生长发育的分子机制,同时也为未来绿色农业生产提供了基因资源。分子植物卓越中心王二涛研究员、张余研究员和何祖华院士作为文章共同通讯作者,王二涛研究组的博士后王钢、博士生陈曦以及张余研究组的已毕业博士生俞承志作为共同第一作者。王二涛研究团队多年来致力于植物与微生物共生机理和应用的创新研究,并在该领域取得了丰硕的研究成果。他们的研究工作不仅揭示了植物识别区分共生菌与病原菌的分子机制,也为作物通过微生物高效获取营养奠定了坚实的基础。