《Nature,2月25日,Structural insights into SARS-CoV-2 spike protein and its natural mutants found in Mexican population》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2021-03-01
  • Structural insights into SARS-CoV-2 spike protein and its natural mutants found in Mexican population

    Yudibeth Sixto-López, José Correa-Basurto, Martiniano Bello, Bruno Landeros-Rivera, Jose Antonio Garzón-Tiznado & Sarita Montaño

    Scientific Reports volume 11, Article number: 4659 (2021)

    Abstract

    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus responsible for coronavirus disease 2019 (COVID-19); it become a pandemic since March 2020. To date, there have been described three lineages of SARS-CoV-2 circulating worldwide, two of them are found among Mexican population, within these, we observed three mutations of spike (S) protein located at amino acids H49Y, D614G, and T573I. To understand if these mutations could affect the structural behavior of S protein of SARS-CoV-2, as well as the binding with S protein inhibitors (cepharanthine, nelfinavir, and hydroxychloroquine), molecular dynamic simulations and molecular docking were employed. It was found that these punctual mutations affect considerably the structural behavior of the S protein compared to wild type, which also affect the binding of its inhibitors into their respective binding site. Thus, further experimental studies are needed to explore if these affectations have an impact on drug-S protein binding and its possible clinical effect.

  • 原文来源:https://www.nature.com/articles/s41598-021-84053-8
相关报告
  • 《Nature,3月25日,Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-29
    • Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice Raoul De Gasparo, Mattia Pedotti, […]Luca Varani Nature (2021) Abstract Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19)1,2. We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C1353. CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.
  • 《BioRxiv,2月16日,The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-17
    • The insert sequence in SARS-CoV-2 enhances spike protein cleavage by TMPRSS Tong Meng, Hao Cao, Hao Zhang, Zijian Kang, Da Xu, Haiyi Gong, Jing Wang, Zifu Li, Xingang Cui, Huji Xu, Haifeng Wei, Xiuwu Pan, Rongrong Zhu, Jianru Xiao, Wang Zhou, Liming Cheng, Jianmin Liu doi: https://doi.org/10.1101/2020.02.08.926006 Abstract At the end of 2019, the SARS-CoV-2 induces an ongoing outbreak of pneumonia in China1, even more spread than SARS-CoV infection2. The entry of SARS-CoV into host cells mainly depends on the cell receptor (ACE2) recognition and spike protein cleavage-induced cell membrane fusion3,4. The spike protein of SARS-CoV-2 also binds to ACE2 with a similar affinity, whereas its spike protein cleavage remains unclear5,6. Here we show that an insertion sequence in the spike protein of SARS-CoV-2 enhances the cleavage efficiency, and besides pulmonary alveoli, intestinal and esophagus epithelium were also the target tissues of SARS-CoV-2. Compared with SARS-CoV, we found a SPRR insertion in the S1/S2 protease cleavage sites of SARS-CoV-2 spike protein increasing the cleavage efficiency by the protein sequence aligment and furin score calculation. Additionally, the insertion sequence facilitates the formation of an extended loop which was more suitable for protease recognition by the homology modeling and molicular docking. Furthermore, the single-cell transcriptomes identified that ACE2 and TMPRSSs are highly coexpressed in AT2 cells of lung, along with esophageal upper epithelial cells and absorptive enterocytes. Our results provide the bioinformatics evidence for the increased spike protein cleavage of SARS-CoV-2 and indicate its potential target cells. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.