《Climatological mean and decadal change in surface ocean pCO 2, and net sea–air CO 2, flux over the global oceans》

  • 来源专题:物理海洋学知识资源中心
  • 编译者: cancan
  • 发布时间:2018-11-14
  • Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO 2, and net sea–air CO 2, flux over the global oceans.

    来源: Deep-Sea Research Part I, 2009, 56(11):2075-2076.

    摘要: A climatological mean distribution for the surface water pCO2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601–1622]. A time-trend analysis using deseasonalized surface water pCO2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y−1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y−1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database.

    全文网址:https://www.sciencedirect.com/science/article/pii/S0967064508004311

  • 原文来源:https://www.sciencedirect.com/journal/deep-sea-research-part-i-oceanographic-research-papers
相关报告
  • 《Air–sea interaction over ocean fronts and eddies》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:cancan
    • 发布时间:2018-11-14
    • Small R J, Deszoeke S P, Xie S P, et al. Air–sea interaction over ocean fronts and eddies. 来源: Dynamics of Atmospheres & Oceans, 2008, 45(3):274-319. 摘要: Air–sea interaction at ocean fronts and eddies exhibits positive correlation between sea surface temperature (SST), wind speed, and heat fluxes out of the ocean, indicating that the ocean is forcing the atmosphere. This contrasts with larger scale climate modes where the negative correlations suggest that the atmosphere is driving the system. This paper examines the physical processes that lie behind the interaction of sharp SST gradients and the overlying marine atmospheric boundary layer and deeper atmosphere, using high resolution satellite data, field data and numerical models. The importance of different physical mechanisms of atmospheric response to SST gradients, such as the effect of surface stability variations on momentum transfer, pressure gradients, secondary circulations and cloud cover will be assessed. The atmospheric response is known to create small-scale wind stress curl and divergence anomalies, and a discussion of the feedback of these features onto the ocean will also be presented. These processes will be compared and contrasted for different regions such as the Equatorial Front in the Eastern Pacific, and oceanic fronts in mid-latitudes such as the Gulf Stream, Kuroshio, and Agulhas Return Current. 全文网址:https://www.sciencedirect.com/science/article/pii/S0377026508000341
  • 《白令海海表pCO2和海-气CO2通量的时空变化研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-02-27
    • 自然资源部第二海洋研究所白雁研究员及其合作者在海洋学领域知名期刊Frontiers in Marine Science 发表了题为“Spatial and temporal variations in sea surface pCO2 and air-sea flux of CO2 in the Bering Sea revealed by satellite-based data during 2003–2019”(2003-2019年白令海海表pCO2和海-气通量的时空变化)的研究论文。论文的第一作者为自然资源部第二海洋研究所的张思琪博士,论文通讯作者为白雁研究员,合作者包括何贤强研究员、李腾副研究员、龚芳高级工程师、余舒洁博士、潘德炉院士以及上海交通大学联合培养的博士生江治廷。 白令海是北太平洋海水进入北极的重要通道,了解白令海海-气二氧化碳(CO2)通量的长时间序列变化对全球碳循环研究具有重要的借鉴意义。本研究基于白令海走航海水二氧化碳分压(pCO2)数据和多源卫星数据,利用高斯过程回归(GPR)模型反演了2003-2019年白令海的海水pCO2,估算了相应的海-气CO2通量,并在此基础上分析了海水pCO2和海-气CO2通量的时空分布和主要控制机制。 本研究在利用GPR方法,以6个参数组合作为模型输入参数(XCO2、Chla、SSH、MLD、SST和水深数据)对白令海海水pCO2,进行了反演。经评估数据集验证,在陆架海区反演海水pCO2 的RMSE为23.08 μatm(R2= 0.91),海盆区RMSE为12.56 μatm(R2=0.96)。研究保留了两个覆盖度较大的航次用于独立验证(1424个组观测数据),RMSE为23.49μatm(R2为0.94)。GPR算法可以较好模拟白令海海水pCO2的时空分布特征。 在此基础上,本研究反演了2003-2019年17年间白令海海水pCO2遥感月平均产品,空间分辨率为4km。2003-2019年期间,白令海海水pCO2数值范围是250~450 μatm,呈现出明显的季节和空间变化,虽然,陆架和海盆区域都表现为典型的亚极地pCO2季节变化模式,即夏季海水pCO2较低,冬季和春季海水pCO2较高,但是海盆与陆架区的季节性变化并不同步,陆架海水pCO2季节性下降比海盆区域的早2-3个月,并且在4-9月陆架海水pCO2都保持在较低值。 本研究重建了2003年-2019年白令海海-气CO2通量,其季节变化与海水pCO2的季节变化相似,平均海-气CO2通量约为±0.7 mol m−2 mon-1。整体上从11-次年4月海水向大气释放CO2,并在6-10月成为大气CO2汇。除阿拉斯加沿岸外,陆架则持续表现为大气CO2的汇,并在春季达到最大的CO2吸收量。阿拉斯加沿岸在夏季,特别是6-8月表现为大气CO2的弱源。白令海南部(阿留申群岛沿海)整体呈现为碳源。由于海水pCO2在冬季的缺失,冬季海-气CO2通量数据也存在较多的缺失。 本研究计算了温度对海水pCO2的影响(T(pCO2)),以及所有其他非温度过程对海水pCO2的影响(nonT(pCO2))。结果表明,在白令海,非温度效应,包括生物效应、上升流作用和季节性混合共同主导了海水pCO2的时空变化;和具有相反的影响,同时非温度效应比温度效应大~2-4倍,温度效应平均贡献为12.7 μatm,而平均非温度效应为−51.8 μatm。这种差异也证实了前人所提出的温度不是白令海海水pCO2变化的主要控制机制的结论。 在大气pCO2持续上升(约2.1 μatm yr−1)的背景下,白令海海盆和陆架的碳源/汇格局向不同方向演化。从2003年到2019年,海盆作为大气CO2的源,海水pCO2呈持续增加趋势(2.8 μatm yr−1)。陆架海区海水pCO2并没有明显的趋势变化,一直保持在<360 μatm的较低值(季节性波动为±63 μatm),其初级生产力较高,是一个重要碳汇。总体来说,白令海总体上可以被视为一个不断增加的碳汇。由于碳酸盐系统的变化,陆架区海水pCO2的季节性振幅也在显著增加,这可能会影响未来白令海的碳汇能力。 论文引用 Zhang S, Bai Y*, He X, Jiang Z, Li T, Gong F, Yu S and Pan D (2023) Spatial and temporal variations in sea surface pCO2 and air-sea flux of CO2 in the Bering Sea revealed by satellite-based data during 2003–2019. Front. Mar. Sci. 10:1099916. doi: 10.3389/fmars.2023.1099916