《中国科学院成功合成新型碳基二维半导体材料 弥补石墨烯缺憾》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2021-12-09
  • 近期召开的“全球IEEE(电气和电子工程师协会)国际芯片导线技术会议”上,IMEC(欧洲微电子研究中心)提出了四种延续摩尔定律、打破2nm芯片物理极限的方法。这几种方法无一不是建立在了使用“石墨烯材料”的基础之上。经过讨论,专家组最终达成一致,将石墨烯定位下一代新型半导体材料,将碳基芯片定义为下一个芯片时代的主流。

    以石墨烯为代表的碳基二维材料自发现以来受到了广泛关注。然而,石墨烯的零带隙半导体性质严重限制了其在微电子器件领域的应用。

    针对该情况,中国科学院上海微系统与信息技术研究所研究人员等自2013年开展新型碳基二维半导体材料的制备研究,2014年1月成功制备了由碳和氮原子构成的类石墨烯蜂窝状无孔有序结构半导体C3N单层材料,并发现该材料在电子注入后产生的铁磁长程序。

    C3N晶格结构及氢化后铁磁长程序

    从结构图可以看出原本C原子构成的六边形全部被N原子分隔开。C3N的成功合成弥补了石墨烯无带隙的缺憾,为碳基纳米材料在微电子器件的应用提供了新的选择,并引起广泛关注。

    研究人员于2016年初步实现AA'及AB'堆垛双层C3N的制备。在此基础上,他们与华东师范大学研究员袁清红团队通过近5年努力,借助实验技术与理论研究,在双层C3N的带隙性质、输运性质等研究领域取得突破,进一步证明双层C3N在纳米电子学等领域的重要应用潜力。该工作证明了通过控制堆垛方式实现双层C3N从半导体到金属性转变的可行性。与本征带隙为1.23 eV的单层C3N相比,双层C3N的带隙大致可以分为三种:接近金属性的AA和AA'堆垛、带隙比单层减少将近30%的AB和AB'堆垛、与单层带隙相近的双层摩尔堆垛。

    AA'(a-c)及AB'(d-f)堆垛双层C3N的HAADF-STEM图像

    上述工作是C3N材料实验与理论研究的重要突破,为进一步构建新型全碳微电子器件提供了支撑。然而,相比于目前研究已经比较成熟的石墨烯,C3N的研究起步较晚,该材料的基本物性研究仍有大量空白有待填补。

相关报告
  • 《中国科学院在石墨炔碳材料研究上获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-25
    • 伴随着可再生的风、光等非化石能源的发展,能源和环境方面的种种压力和问题将不断得到改善。然而像光能、风能等能源具有不稳定、不连续、不可控等缺点,而这些往往会造成巨大的能量损失。仅在2016年,我国由于不可控而造成的弃风、弃光电量就达到了500亿千瓦时,而这一数据已经超过了某些国家一年的用电量。要解决这一问题,就需要储能器件和技术的进一步发展,而大规模储能的瓶颈之一就是能源存储和转换材料的发展。 碳材料,特别是二维碳材料,如石墨炔、石墨烯,具有高度共轭的碳骨架、均匀分布的孔隙和二维层状平面特性,拥有巨大的应用前景。其中由苯环和炔键链接构成的石墨炔类碳材料,具有更大的孔道构造和大量的sp杂化碳原子,能够提供丰富的离子通道和催化活性位点。中国科学院青岛生物能源与过程研究所碳基材料与能源应用研究组研究发现,石墨炔碳材料可以通过前驱体控制、化学键合、热处理等方式引入特定的异原子,增加更多的活性位点或者催化中心,进而制备出电化学性能更好的储能材料、电催化材料,在电化学储能、燃料电池电催化等领域具有重要的应用前景。 研究组基于石墨炔类碳材料的可控制备和应用,在可充电电池、太阳能电池、催化剂和电子材料等领域均取得一系列进展。石墨炔中富含大量的乙炔链,而这些乙炔链中的sp杂化碳一方面可以作为反应的活性位点,同时也可以作为异原子的附着点位,研究人员充分利用石墨炔的这一特点,通过对石墨炔类碳材料进行异原子掺杂(如铁、氮、硫等)制备得到了石墨炔异原子掺杂材料;进一步的应用研究表明,所制备的掺杂石墨炔类碳材料在锂离子电池、锂离子电容器、钠离子电容器以及电催化等器件应用中均表现出优异的电化学性能。 相关成果已经分别作为期刊封面发表在国际期刊CARBON, Chem. Eur. J., ChemSusChem 和ChemElectroChem 上(DOI: 10.1016/j.carbon.2018.05.049, 10.1002/celc.201800300, 10.1002/celc.201800516, 10.1002/cssc.201802170, 10.1002/chem.201900477, 10.1002/chem.201900943)。 上述研究成果对于新型碳材料的开发制备及其催化、储能应用具有重要的指导意义。该研究得到国家自然科学基金项目、中国科学院前沿重点项目、山东省自然科学基金的支持。
  • 《中国科学院金属所研究团队发现全新的二维层状材料家族》

    • 来源专题:后摩尔
    • 编译者:shenxiang
    • 发布时间:2020-08-31
    • 据科学网8月16日报道,《科学》杂志近期在线发表了新型二维材料方面的最新进展——二维层状MoSi2N4材料的化学气相沉积,该进展的研究团队来自中国科学院金属研究所沈阳材料科学国家研究中心先进炭材料研究部。 据了解,以石墨烯为代表的二维范德华层状材料具有独特的电学、光学、力学、热学等性质,在电子、光电子、能源、环境、航空航天等领域具有广阔的应用前景。目前广泛研究的二维层状材料,如石墨烯、氮化硼、过渡金属硫族化合物、黑磷烯等,均存在已知的三维母体材料。探索不存在已知三维母体材料的二维层状材料,可极大拓展二维材料的物性和应用,具有重要的科学意义和实用价值。 2015年,金属所沈阳材料科学国家研究中心研究员任文才、成会明团队发明了双金属基底化学气相沉积(CVD)方法,制备出了多种不同结构的非层状二维过渡金属碳化物晶体,如正交Mo2C、六方WC和立方TaC,并发现超薄Mo2C为二维超导体(Nature Materials, 2015)。然而受表面能约束,富含表面悬键的非层状材料倾向于岛状生长,因此难以得到厚度均一的单层材料。 该团队最近研究发现,在CVD生长非层状二维氮化钼的过程中,引入硅元素可以钝化其表面悬键,从而制备出一种不存在已知母体材料的全新的二维范德华层状材料MoSi2N4,并获得了厘米级单层薄膜。单层MoSi2N4包含N-Si-N-Mo-N-Si-N 7个原子层,可以看成是由两个Si-N层夹持单层MoN(N-Mo-N)构成。采用类似方法,还制备出了单层WSi2N4。 在此基础上,他们与金属所陈星秋研究组和孙东明研究组合作,发现单层MoSi2N4具有半导体性质(带隙约1.94 eV)和优于MoS2的理论载流子迁移率,还表现出优于MoS2等单层半导体材料的力学强度和稳定性;并通过理论计算预测出了十多种与单层MoSi2N4具有相同结构的二维层状材料,包含不同带隙的半导体、金属和磁性半金属等。 该工作不仅开拓了全新的二维层状MoSi2N4材料家族,拓展了二维材料的物性和应用,而且开辟了制备全新二维范德华层状材料的研究方向,为获得更多新型二维材料提供了新思路。 相关论文信息:https://science.sciencemag.org/content/369/6504/670