《北京大学成立硕特科技低碳水处理联合实验室,聚焦低碳电化学与资源化水处理技术》

  • 来源专题:水环境治理与保护
  • 编译者: 王阳
  • 发布时间:2023-04-25
  • 2023年4月10日上午,“北京大学—成都硕特科技低碳水处理联合实验室”签约揭牌仪式在环境科学与工程学院顺利召开。成都硕特科技股份有限公司董事长倪金元、副总经理黄兴俊,北京大学科技开发部副部长邱建国、环境科学与工程学院院长朱彤、党委书记李振山、联合实验室负责人杨武霖等十余位领导嘉宾出席了本次会议。本次签约揭牌仪式由环境科学与工程学院副院长李天宏主持。

      邱建国在致辞中对北京大学长期以来的科研开发、成果转化及高技术产业情况做了总体介绍。他表示,在刚刚过去的二十大上,习近平总书记对绿色发展、减污降碳做出了重要指示,本次联合实验室的成立正是为了响应国家号召,为新时代绿色发展和生态文明建设提供支撑。联合实验室的建设旨在服务国家战略需求,推动技术创新和促进社会可持续发展。

      倪金元在致辞中首先介绍了硕特科技的成立发展历程,及硕特科技取得的一系列创新性科技成果,已成为国内工业水零排放领域的领军企业,在智能制造生产和全国产业布局方面均处于领先地位。倪金元强调,联合实验室的成立,将有助于打造硕特科技核心竞争力,形成品牌效应,树立行业标杆,为“双碳”目标的实现贡献技术力量。

      黄兴俊在致辞中对硕特科技的优势与不足做了全面详实的介绍。他表示,硕特科技在科技成果方面处于业内顶尖水平,公司在此前与四川大学等多所高校的校企合作中均取得了显著成果,但在基础研究领域仍存在薄弱环节,希望今后能与北京大学携手共进、攻坚克难,共同打造绿色发展的强劲引擎,培养新时代的环境学科人才。
      朱彤在致辞中指出改革开放以来,我国工业化和城镇化进程不断加快带来了严重的水资源短缺和水污染问题,能源危机和全球气候变化也引起了全社会广泛关注,这既是我们面临的挑战,同时也是新技术发展的机遇。他表示,硕特科技在废物处置及资源化利用和提供“碳中和”环境问题整体解决方案等方面均有着丰富经验,在水环境治理行业引领着行业技术创新。此次两方联合成立低碳电化学水处理技术联合实验室,将为我国生态文明建设赋能,为可持续发展贡献力量。
      作为实验室负责人,杨武霖首先对北京大学各位领导及硕特科技对实验室建设的大力支持表示由衷感谢。他表示,本次联合实验室的成立是学校与企业深度合作的成果,是践行科技创新的一次大胆尝试。联合实验室立足于低碳电化学水处理技术,依托北京大学环境科学与工程学院的专业学科优势和硕特科技的先进核心技术,汇集双方顶尖科研力量,拉紧了科学研究与产业化应用的深度融合的共同纽带。
      朱彤与倪金元在领导嘉宾的见证下签订校企合作协议,并共同为联合实验室揭牌。



      本次联合实验室的建立,为拓宽校企合作、促进产学研一体化奠定了基础。站在绿色低碳发展的新起点上,北京大学环境科学与工程学院将携手硕特科技,共同把握团结奋斗的时代要求,守正创新,踔厉奋发,服务国家重大需求,为全球水处理和清洁能源事业贡献力量!

相关报告
  • 《焦化废水处理技术的研究进展》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-07-19
    • 焦化废水是在煤制焦炭、煤气净化和化工产品精制过程中产生的废水,其成分复杂多变,除氨氮、氰及硫氰根等无机污染物外,还含有酚类、萘、吡啶、喹啉等杂环及多环芳香族化合物(PAHs)[1]。由于氰化物、多环芳烃及杂环化合物很难生物降解,加之高浓度氨氮对微生物活性具有很强的抑制作用,导致废水的可生化性较差,焦化废水一直是公认的最难处理的工业废水之一[2]。 随着我国钢铁工业的飞速发展,焦炭产能的不断扩大,产生的焦化废水数量也在不断增加,其达标排放问题越来越受到环保部门及企业的高度重视。同时“十二五”规定,单位工业增加值用水量需要降低30%,水资源已经成为阻碍很多企业可持续发展的瓶颈,因此开发出经济合理、新型高效的焦化废水处理工艺仍旧是工业废水研究领域的重大课题。 1焦化废水的来源和水质特点及危害 1.1 焦化废水的来源 焦化废水是在煤高温裂解得到焦炭和煤气的生产过程中回收焦油、苯等副产品而产生的,其主要来源有: (1)煤高温干馏和荒煤气冷却过程中产生的剩余氨水; (2)煤气净化过程中产生的煤气终冷水及粗苯分离水; (3)粗焦油加工、苯精制、精酚生产及古马隆生产等过程产生的污水; (4)接触煤、焦粉尘等物质的废水。这几种废水中,一般剩余氨水占废水总量的50%~70%,是焦化废水处理的重点[3]。 1.2 焦化废水水质特点及危害 (1)成分复杂:焦化废水组成复杂,其中所含的污染物可分为无机污染物和有机污染物两大类。无机污染物一般以铵盐的形式存在,有机物除酚类化合物以外,还包括脂肪族化合物、杂环类化合物和多环芳烃等。其中以酚类化合物为主,占总有机物的85%左右,主要成分有苯酚、邻甲酚、对甲酚、邻对甲酚、二甲酚、邻苯二甲苯及其同系物等;杂环类化合物包括二氮杂苯、氮杂联苯、吡啶等;多环类化合物包括萘、蒽、菲等。 (2)含有大量的难降解物,可生化性较差:焦化废水中有机物(以COD计)含量高,且由于废水中所含有机物多为芳香族化合物和稠环化合物及吲哚、吡啶等杂环化合物,其BOD5/COD值低,一般为0.3~0.4,有机物稳定,微生物难以利用,废水的可生化性差。 (3)废水毒性大:其中氰化物、芳环、稠环、杂环化合物都对微生物有毒害作用,有些甚至在废水中的浓度已超过微生物可耐受的极限。 (4)含有危害水生生物和人体的剧毒及致癌物质:主要污染物质为环链有机化合物、叠氮化合物以及氨氮等。这些物质对生态环境以及人体的健康都会造成一定的危害,如果人直接饮用了含一定浓度这类物质的水或长时间吸入含该类物质的空气,将会危害身体健康,严重者可以致癌;特别是有些物质可在动物或植物体内富集,使其浓度浓缩许多倍,最终通过食物链侵害到人类;焦化废水中的含碳类化合物多数都是耗氧类物质,它们进入水体后要消耗水体中的溶解氧,严重时可以导致水体的腐化;而焦化废水中的含氮类物质,能导致水体的富营养化,可以导致藻类的大量孽生和繁殖;氨氮在水体中还能转化成硝态氮,婴幼儿饮用了含有一定浓度硝态氮的水,可导致白血病。因此,焦化废水对自然生态的破坏及其严重,对人类的威胁巨大[4]。 2 焦化废水处理技术的研究进展 目前,国内大部分的焦化厂普遍采用普通活性污泥法处理经蒸氨、脱酚预处理的焦化废水,处理后水中的酚、氰、油等有害物质大为降低,但对COD和NH3-N的去除率并不高,难降解物质的存在使出水水质不能达到国家排放标准。因此,还需要进行深度处理即三级处理。然而,深度处理费用昂贵,成本压力大,多数焦化厂仅采用生化处理,未经三级处理,造成未达标排放,严重污染了水环境,给人类健康带来了严重危害[5-6]。因此,寻求和研究新的处理工艺是提高焦化废水处理效果的关键所在。 2.1 焦化废水传统处理技术 2.1.1 芬顿(Fenton)试剂处理 1984年,H.J.H.Fenton发现通过H2O2与Fe2+的混合后,各种简单的和复杂的有机化合物均能被氧化。其机理认为是Fenton试剂通过催化分解产生羟基自由基(·OH)进攻有机物分子(RH)夺取氢,并使其降解为小分子有机物或矿化为CO2和H2O。K.Banerjee等对焦化废水进行研究,发现采用Fenton试剂处理后能有效地减小焦化废水中COD的浓度[7]。许海燕等[8]取生化处理后的焦化废水为实验水样(CODcr为223.9mg/L)加入Fenton试剂后,又加入絮凝剂FeCl3和助凝剂PAM,过滤除去废渣,处理后的水样中CODcr为43.2mg/L。谢成等[9]采用Fenton法对广东韶关钢铁公司焦化厂废水进行预处理,结果表明酚、苯系物、石油烃、含氮杂环有机物和多环芳烃的去除率在90 %以上。 2.1.2 吸附法 吸附法处理焦化废水是利用固体表面有吸附水中溶质及胶质的能力,吸附水中一种或多种物质从而使水得到净化。常用的吸附剂种类有很多,如活性炭、吸附树脂、磺化煤、矿渣等。活性炭是最常用也是处理水质最好的一种吸附剂。徐革联等[10]模拟工业条件,将活化污泥与水混合,分别投入焦粉、活性炭、粉煤灰,发现活性炭的吸附性能最好,焦粉次之。可用于废水的深度处理,但是活性炭需酸洗再生,再生设备容易腐蚀,运行成本高。吴健等[11]人在生物脱酚的基础上,向二沉池中投加絮凝剂,并增设焦炭、活性炭吸附塔等设备对焦化废水进行深度处理,使CODcr去除率达80%-90%。刘俊峰等[12]用南开牌H2103大孔树脂吸附处理含酚520 mg/L、COD3200mg/L的焦化废水,处理后出水酚含量≤0.5 mg/ L,COD≤80mg/L,达到国家排放标准。一些研究者通过改性粉煤灰吸附处理焦化厂含酚水的试验,酚、SS、COD和色度的去除率分别达到95 %,而且处理费用较低。 2.1.3 混凝气浮法 该方法首先采用聚合硫酸铁(PFS)破坏胶体和悬浮微粒在水中形成的稳定分散体系,使其聚集成絮凝体,然后含有大量絮凝体的混合液通过配水堰进入气浮池,利用高度分散的微小气泡作为载体去粘附水中的絮凝体,使其随气泡升到水面。产生的浮渣通过刮泥机和排泥管道自流进入污泥浓缩池。龚文琪[13]采用混凝法处理湖北鄂钢公司酚、氰废水,在运行过程中发现挥发酚、游离氰化物容易去除,而络合氰化物难以通过曝气氧化去除,COD去除效果不十分理想,但通过加入生活污水,提高废水的可生化性以后,基本能使出水COD达到国家二级排放标准。刘剑平,赵娜等[14]采用混凝气浮法处理污水的过程中,发现该系统具有结构简单、运行稳定、操作方便、溶气效率高的优点,但是该系统也存在当进水中的悬浮物过高时,出水中悬浮物浓度升高,造成释放器堵塞。 2.1.4 A/O工艺 A/O工艺是目前焦化污水脱氮的主要工艺。A/O工艺既能脱氮也能将废水中大部分的有机物降解去除,是一种较为理想的废水处理技术,但是对于某些有毒有害物质(氰化物及氨氮等)的降解能力差,常常难以达到国家允许的排放标准[15]。现许多处理厂对A/O工艺进行改进形成的A2/O工艺的可行性研究表明,A2/O工艺比A/O工艺脱氮效果更好,但是基建投资比原来高30 %左右,操作费用也要增加60 %~80 %[16]。 2.1.5 SBR工艺 普通活性污泥法对焦化废水中的氨氮降解效果较差,处理后出水NH3-N在200mg/L左右,COD在300mg/L左右,这两项指标均不能达到排放标准[17]。而且普通活性污泥系统存在抗冲击能力差,生长缓慢,操作不稳定等缺点。SBR工艺是一种活性污泥法新工艺,它在同一反应器内,通过进水、反应、沉淀、出水和待机5个阶段,循序完成缺氧、厌氧和好氧过程,实现对水的生化处理。钟梅英[18]对SBR工艺处理焦化废水进行了研究,结果表明,进水COD为650~1900mg/L,氨氮为150~330mg/L时,去除率分别达到80%和70%以上,且处理费用较低。LI Bing等[19]用厌氧序批式反应器来预处理焦化废水,结果表明,在tf/tr为0.5,搅拌强度为0.025L/L和间歇搅拌模式为100s/45 min的最佳条件下,有机负荷率为0.37-0.54kgCOD/(m3/d)的稳定运行期间,CODcr去除率达到38%~50%。此外,焦化废水经预处理后,BOD5/COD从0.27提高到0.58。 2.2 焦化废水处理新技术 2.2.1 催化湿式氧化技术 催化湿式氧化技术一般是指在高温和高压下,在催化剂作用下,用氧气将废水中的有机物和氨氮等污染物氧化,最终转化为CO2和N2等无害物质的技术。此方法具有使用范围广、处理效率高、氧化速度快、二次污染小等优点。但由于操作在高温高压下进行,因此对工艺设备要求严格,投资费用高。所以此方法在一些发达国家已实现工业化,用于处理含氰废水、煤汽化废水、造纸黑液。杜鸿章等[20]研制出适合处理焦化厂蒸氨、脱酚前浓焦化污水的湿式氧化催化剂,该催化剂活性高、耐酸、碱腐蚀,稳定性好,适用于工业应用,对CODcr及NH3的去除率分别为99.5%和99.9%。 2.2.2 超临界水氧化法 超临界水是指温度、压力都高于其临界点的水,当温度高于临界温度374.3℃,压力大于临界压力22.1MPa时,水的性质发生了很大的变化,水的氢键几乎不存在,具有极低的介电常数和很好的扩散、传递性能,具有良好的溶剂化特征。该法在20世纪80年代初由美国学者Mdoell[21]提出,在很短的时间内,废水中99%以上的有机物能迅速被氧化成H2O、CO2、N2及其它无害小分子。 2.2.3 利用烟道气处理焦化废水 为了彻底解决焦化废水的污染问题,殷广谨等[22]人采用一种与生化法截然不同的处理技术,即利用烟道气处理焦化剩余氨水或全部焦化废水。锅炉烟道气处理工艺是废水在喷雾塔中与烟道气接触并发生物理化学反应,废水全部汽化,烟道气中SO2与废水中的NH3及塔中的O2发生化学反应生成(NH4)2SO4。吸附在烟尘上的有机污染物在高温焙烧炉或锅炉炉膛内进行无毒化分解,从而实现了废水的零排放,同时对大气环境无污染。该工艺“以废治废”,不仅处理效果好,还具有投资省、运行费用低等优点。 2.2.4 固定化细胞技术 固定化细胞(简称IMC)技术是通过化学或物理的手段将游离细胞或酶定位于限定的空间区域内,使其保持活性并可反复利用的方法。制备固定化细胞可采用吸附法、共价结合法、交联法、包埋法等。固定化细胞技术充分发挥了高效菌种或遗传工程菌在降解有机物过程中的高效降解作用,具有细胞密度高,反应迅速,微生物流失少,产物分离容易等优点,且反应过程控制较容易,污泥产生量少,同时可去除氯及高浓度难降解有机物[23]。Amanda等[24]以PVA-H3BO3包埋法固定化假单胞菌Psendomonas,在流化反应器中连续运行2周,进水酚浓度从250mg/L逐渐提高到1300mg/L,出水酚浓度可降至极低。 2.2.5 超声波法 利用超声波降解水中的化学污染物,尤其是难降解的有机污染物,是近年来发展起来的一项新型处理技术。超声波由一系列疏密相间的纵波构成,并通过液化介质向四周传播,当声能足够高时,在疏松的半周期内,形成空化核,其寿命约为0.1μs。在破裂的瞬间可产生约4000K、100MPa的局部高温高压环境,并产生速度约110m/s、具有强烈冲击力的微射流,称为超声空化。超声空化足可使有机物在空化气泡内发生化学键断裂、水相燃烧、高温分解或自由基反应。研究表明,卤代脂肪烃、单环或多环芳烃及酚类物质等都能被超声波降解[25]。 2.2.6 等离子体处理技术 等离子体处理技术是利用高压毫微秒脉冲放电等离子体对难降解有机废水进行处理。其原理是在毫微秒高压脉冲作用下,气体间隙产生放电等离子体,放电等离子体中存在大量高能电子,这些高能电子作用于水分子产生大量的水合电子、OH、O等可氧化水中有机物的强氧化基团。研究表明,焦化废水经脉冲放电处理后,大分子有机物被氧化分解为小分子,再用活性污泥法进行后续处理,废水中氰化物、酚及CODcr的去除率显著提高[26]。 2.2.7 生物强化技术 生物强化技术就是为了提高废水处理系统的处理能力,而向该系统中投加从自然界中筛选的优势菌种或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质的方法。生物强化技术因能提高水处理的范围和能力,近年来在焦化废水治理中的应用日益重要。Donghee Park等[27]为了提高生物去除总氰化物的效率,用生物强化技术处理焦化废水。经过实验室培养可降解氰化物的酵母菌和不明确的降解氰化物的微生物,然后将微生物菌体接种入流化床反应器。结果表明:全面的氰化物生物降解的连续运行表明去除率比想象中低。王璟、张志杰等[28]研究了投加高效菌种及微生物共代谢对焦化废水生物处理的增强作用,结果表明:高效菌种能普遍提高难降解物的去除率,48h内可以比投加初级基质提高CODcr去除率47%左右,初级基质与高效菌种组合协同作用效果好,48h后焦化废水CODcr去除率达到60%左右。 2.2.8 膜生物反应器(MBR)法 MBR工艺是20世纪90年代发展起来的一种污水处理新技术,是生物处理与膜分离技术相结合形成的一种高效污水处理工艺。该技术用膜分离技术取代传统接触氧化法的二沉池,膜的高效固液分离能力使出水水质优良,处理后出水可直接回用。MBR对于COD以及NH3-N的处理效果均好于常规的A/O法[29]。但是MBR造价较二沉池高,在经济效益方面不如传统二沉池有优势,成为制约工业化应用的主要因素。 3 结论 经过不断的研究和实践,焦化废水的处理方法已经很多,且取得了较好的处理效果,但也存在一些缺点,比如外排水COD很少能够稳定达到国家一级排放标准,出水指标不稳定。随着环保要求的日益严格,单靠一种处理方法难以达到理想的效果。利用多种方法的协同作用处理焦化废水,可发挥各自的优点,有助于更进一步地提高处理效率。因此,通过多种方法的有机组合、联用,最终研发出处理效果好、投资省、运行费用低、操作简单、易于控制的焦化废水处理新技术,不但可以为企业降低新水消耗量,节约生产成本,维护周边的生态环境,而且还为履行国家的节能减排战略,以及对生态环境的保护和焦化企业的可持续发展具有重要的现实意义。
  • 《【前沿科技】干货!21种污水处理中常见污染物的来源及处理方法!》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-04-10
    • 废水中各种污染物众多,重金属污染物,微生物污染物等来源也比较广泛,都是如何处理的呢?接下来跟着小编,一起来看看这21种常见污染物的来源以及污水处理方法。 1、耗氧有机物(易生化) 污水中耗氧有机物(易生化)主要有腐植酸、蛋白质、酯类、糖类、氨基酸等化合物,这些物质以悬浮或溶解状态存在于废水中。在微生物的作用下,这些有机物可以分解为简单的CO2等无机物,但因为在天然水体中分解时需要消耗水中的溶解氧,因而称为耗氧有机物。 含有这些物质的污水一旦进入水体,会引起溶解氧含量降低进而导致水体变黑变臭。生活污水和食品、造纸、石油化工、化纤、制药、印染等企业排放的工业废水都含有大量的耗氧有机物。 据统计,我国造纸业排放的耗氧有机物约占工业废水排放总量的1/4,城市污水的有机物浓度不高,但因水量较大,城市污水排放的耗氧有机物总量也很大。污水二级生物处理要重点解决的问题就是将这些物质的绝大部分从污水中去除掉。 耗氧有机物成分复杂分别测定其中各种胶有机物的浓度相当困难,实际工作中常用cODCr、BOD5、TOC、TOD等指标来表示。一般来说上述指标值越高,消耗水中的溶解氧越多,水质越差。自然水体中BOD5低于3mg/L时,水质良好达到7.5 mg/L时,水质已较差超过10mg/L,表明水质已经很差其中的溶解氧已接近于零。 易降解有机物利用生化法就可以去除,有推流式活性污泥法(例如曝气池),序批式活性污泥法(例如SBR、CASS工艺)、生物膜或者MBR等。 2、难生物降解有机物 难生物降解有机物指的是不能被未驯化的活性污泥所降解,而经过一定时间驯化后能在某种程度上降解的有机化合物。废水中的一些有毒大分子(以有机氯化物、有机磷农药、有机重金属化合物、芳香族为代表的多环及其他长链有机化合物)都属于难以被微生物降解的有机物,还有一些根本不能被微生物降解的可称为惰性有机物。 对含有这类有机物的废水应采取培养特种微生物等形式对其进行单独处理,或对其采用厌氧等特殊工艺处理使其部分CODCr转化为BOD5、提高可生化性然后再混合其他污水一起进行二级生物处理。 3、有机氮和氨氮 有机氮主要以蛋白质形式存在,还有尿素、胞壁酸、脂肪胺、尿酸和有机碱等含氨基和不含氨基的化合物,有些有机氮如果胶、甲壳质和季胺化合物等很难生物降解。生产或以这些有机氮为原料的工业排放的废水中会含有这些有机氮。 钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等行业排放含有氨氮的工业废水,皮革、动物排泻物等新鲜废水中氨氮初始含量并不高,但由于废水中有氮的脱氨基反应在废水贮存或在排水管道中驻留一段时间后氨氮的浓度会迅速增加。 对有机氮工业废水可采用生物法处理,在微生物去除有机碳的同时,高级氧化通过生物同化及生物矿化作用将废水中的有氮转化为氨氮。氨氮废水的处理方法有汽提、空气吹脱、离子交换、活性炭吸附、生物硝化和反硝化等。 4、磷和有机磷 生活污水中磷的主要来源是含磷洗涤产品的使用、人类排泄物、生活垃圾,洗涤产品主要采用磷酸钠和聚合磷酸钠,洗涤剂中的磷随污水流入水体。工业废水是造成水体中磷超标的主要因素之一,具有污染物浓度高、污染物种类多、难降解、成分复杂等特点。若工业废水未经处理直接排放会对水体造成巨大冲击,对环境和居民健康造成不良影响。 磷的去除一般有利用聚磷菌的生化法(AO、A2O、氧化沟等)和化学除磷(PAC、PFS等),而工业污水中有部分的次磷及有机磷,必须用到高级氧化预处理之后才能正常除磷。 5、酸碱废水 高浓度含酸含碱废水来源很广,化工、化纤、制酸、电镀、炼油以及金属加工厂、酸洗车间等都会排出酸性废水。有的废水含有无机酸如硫酸、盐酸等,有的则含有蚁酸、醋酸等有机酸,有的则兼而有之。 废水含酸浓度差别很大,从小于1%到10%以上都有。造纸、印染、制革、金属加工等生产过程会排出碱性废水,大多数情况下含有无机碱,也有含有机碱。某些废水的含碱浓度最高可达百分之几。废水中除含有酸、碱外,还可能含有酸式盐和碱式盐,以及其他酸性或碱性的无机物和有机物等物质。 将含有酸碱的废水随意排放不仅会对环境造成污染和破坏而且也是一种资源的浪费。因此对酸、碱废水首先考虑回收和综合利用。 当酸、碱废水浓度较高时,例如含酸废水含酸量达到4%以上、含碱废水含碱量达到2%以上时,就存在回收和综合利用的可能性,可用来制造硫酸亚铁、石膏、化肥,也可以回用或供其他工厂使用。浓度低于4%的酸性废水和浓度低于2%的碱性废水由于回收利用意义不大,会进行中和处理。 6、油类污染物 高浓度含油废水的主要工业来源是石油工业、石油化工工业、纺织工业、金属加工业和食品加工业。石油开采、炼制、储存、运输或使用石油制品的过程中均会产生含有石油类污染物;而废水肉类加工、牛奶加工、洗衣房、汽车修理等过程排放的废水中也都含有油或油脂。 一般的生活污水中油脂占总有机质的10%左右,每人每天产生的油脂约15g左右。废水中所含的油类除了重焦油的相对密度可达1.1以上外,其余都小于1,故污水处理含油废水的重点就是去除其中相对密度小于1的油类。 废水中油类污染物的种类按存在形式可划分为5种物理形态。 (1)游离态油静止时能迅速上升到液面形成油膜或油层的浮油,这种油珠的粒径较大一般大于100μm约占废水中油类总量的60%—80%。 (2)机械分散态油,油珠粒径一般为10μm-100μm的细微油滴,在废水中的稳定性不高,静置一段时间后往往可以相互结合形成浮油。 (3)乳化态油油珠,粒径小于10μm一般为0.1-2μm,这种油滴具有高度的化学稳定性,往往会因水中含有表面活性剂而成为稳定的乳化液。 (4)溶解态油极细微分散的油珠,油珠粒径比微电解乳化油还小,有的可小到几个nm,也就是化学概念上真正溶解于废水中的油。 (5)固体附着油,吸附于废水中固体颗粒表面的油珠。 废水中的油类存在形式不同、处理的程度不同采用的处理方法和装置也不同。常用的油水分离方法有隔油池、普通除油罐、混凝除油罐、粗粒化聚结除油法、气浮除油法等。 7、致病微生物 一般认为,废水中的致病微生物有细菌、病毒、立克次氏体、原生动物和真菌五种。立克次氏体介于细菌和病毒之间,一些微生物学家把以致梅毒体为代表的致病螺旋体归纳为第六种致病微生物,而螺旋体介于细菌和原生动物之间。有些高于原生动物的微生物,如线虫也能致病。生活污水及屠宰、生物制品、医院、制革、洗毛等工业废水中常含有这些能传染各种疾病的致病微生物。 对致病病原体较为集中和含量较大的污水最好进行单独消毒处理,然后再和其他污水一起进行二级生化处理,这样可以减少消毒剂的消耗量。因为病原体在水中的存活时间较长,有的病毒和寄生虫卵用一般的消毒方法难以杀死。 消毒杀菌的方法有氯、二氧化氯、臭氧等氧化法、石灰处理、紫外线照射、加热处理、超声波等,另外超滤处理也可以除去水中大部分的细菌。就细菌、病毒的去除而言,臭氧氧化、紫外线照射等方法效果很好,但处理后的水中没有类似余氯的剩余消毒剂,无法防止微生物的再繁殖,通常需要在处理后再补充加氯处理。 8、硝酸盐和亚硝酸盐 微电解填料化肥制造、钢铁生产、火药制造、饲料生产、肉类加工、电子元件及核燃料生产等工业排放的废水中,含有高浓度的硝酸盐和亚硝酸盐。某些含有有机氮或氨氮的工业废水起初也许不含这些,但对这些废水进行好氧生物处理时,就有可能转化成硝酸盐或亚硝酸盐。 亚硝酸盐是氮循环的中间产物,在水中的稳定性很差,在有氧和微生物的作用下可被氧化成硝酸盐,在缺氧或无氧条件下可以被还原为氨。因此在清洁的水体中,亚硝酸盐的含量很低。含氮有机物无机化分解最终阶段的代表产物是硝酸盐,因此当水中的氮主要以硝酸盐形式为主时,表明水中含氮有机物含量已很少,水体已达到自净。 如果水中含有较多的硝酸盐而又含其他各种含氮化合物时,表明水体的自净过程正在进行或水体正在受到硝酸盐废水的污染。同时测定体中氨氮、亚硝酸盐氮和硝酸盐氮等三种无机氮并结合有机氮和总氮的分析化验结果,可以分析水体受含氮化合物污染的程度和自净状况。 同样可以利用这些氮化物的分析结果,判断污水处理的效果,并指导调整脱氮工艺的运行。亚硝酸盐在胃里可与仲铵作用形成强致癌物,硝酸盐在人体内可以还原为亚硝酸盐 所以饮用硝酸盐浓度较高的水对人体健康也有危害。儿童饮用高硝酸盐含量的饮水会使血液中变性血红蛋白增加而出现中毒。 因此国家有关标准对水体中硝酸盐浓度做了规定,其中饮用水卫生标准规定最高允许浓度为20mg/L以N计,地表水质量标准GB 3838-2002规定集中式生活饮用水地表水源的硝酸盐最高允许浓度为10mg/L 以N计。 处理含硝酸盐或亚硝酸盐工业废水的常规方法是微电解填料生物反硝化脱氮。对于少量的含硝酸盐或亚硝酸盐工业废水还可以采用电渗析、反渗透、离子交换等方法。 9、氟化物 含氟产品的制造、焦炭生产、电子元件生产、电镀、玻璃,和硅酸盐生产、钢铁和铝的制造、金属加工、木材防腐及农药化肥生产等过程中,都会排放含有氟化物的工业废水。 含氟化物废水的处理方法可分为沉淀法和吸附法两大类。沉淀法适于处理氟化物含量较高的工业废水,但沉淀法处理不彻底往往需要二级处理,处理所需的化学药剂有石灰、明矾、白云石等。吸附法适于处理氟化物含量较低的工业废水或经沉淀处理处理后,氟化物浓度仍旧不能符合有关规定的废水。 10、硫化物 炼油、纺织、印染、焦炭、煤气、纸浆、制革及多种化工原料的生产过程中,都会排含有硫化物的工业废水,含有硫酸盐的废水在厌氧条件下也可以还原产生硫化物成为含有硫化物的废水。 含硫化物废水的处理方法有将硫化物转化为硫化盐进行絮凝沉淀和将硫化物转化为硫化氢汽提两类。 11、氰化物 自然水体中一般不含氰化物,如果发现水体中存在氰化氢那一定是人类活动所引起的。 水中氰化物的主要来源为工业污染。氰化物和氰氢酸是广泛应用的工业原料,采矿提炼、摄影冲印、电镀、金属表面处理、焦炉、煤气、染料、制革、塑料、合成纤维及工业气体洗涤等行业都排放含氰废水。另外石油的催化裂化和焦化过程也会排放含氰废水,其中电镀工业是排放含氰废水最多的行业。 常用的处理方法是氯氧化法、臭氧氧化法和电解氧化法。处理含氰污水时通常加入一定量的氧化剂次氯酸钠,首先使其转化为氯化氰再水解为氰酸盐,然后在碱性条件下被氧化成二氧化碳和氮在酸性条件下转变为铵盐。 12、酚 炼油、化工、炸药、树脂、焦化等行业会排放含酚废水,其中以土法炼焦排放的废水中含酚浓度最高,另外机械维修、铸造、造纸、纺织、陶瓷、煤制气等行业也放大量的含酚废水。 高含酚废水的处理方法有萃取、活性炭吸附和焚烧等。 中浓含水的处理方法有生物法、活性炭吸附法和化学氧化法等。 低浓度含酚废水也可用臭氧氧化或活性炭吸附等方法处理。 13、银 银是一种贵重金属呈银白色。常见银盐中唯一可溶的是硝酸银,这也是废水中含银的主要成分。硝酸银广泛应用于无线电、化工、机器制造、陶瓷、照相、电镀、以及油墨制造等行业,含银废水的主要来源是电镀业和照相业。 从废水中除去银的基本方法有沉淀法、离子交换法、还原取代法和电解回收法四种,吸附法、反渗透法和电渗析法也有被采用的。因为从废水回收银的经济价值较高,因此为了达到高回收率,常联合运用多种方法,比如含银较多的电镀废水可通过离子交换、蒸发或电解还原得到较完全的回收。 14、镍 微电解镍是一种银白色的金属,有很好的延展性和高度磁性。废水中的镍主要以二价离子存在,比如说硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。 含镍废水的工业来源很多,其中主要是电镀业,此外采矿、冶金、机器制造、化学、仪表、石油化工、纺织等工业,以及钢铁厂、铸铁厂、汽车,和飞机制造业、印刷、墨水、陶瓷、玻璃等行业排放的废水中也含有镍。 处理含镍废水的方法有微电石灰沉淀或硫化物沉淀法、离子交换法、反渗透法、蒸发回收法等。 15、铅 纯铅呈灰白色是工业上使用最广泛的有色金属之一,常被用作为原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料、涂料、铅玻璃、炸药、火柴等制造业。铅板制作工艺中排放的酸性废水铅浓度最高,电镀业倾倒电镀废液产生的废水铅浓度也很高。 处理含铅废水的常用方法有沉淀法、混凝法、吸附法、电偶铁氧化法等。 16、铬 纯铬是一种呈钢灰色的耐腐蚀金属硬度较大。随着工业的发展铬及其化合物的应用日益广泛,含铬废水的排放量随之日益增加。含铬系列缓蚀剂是循环冷却系统非常有效的药剂之一,曾经得到大规模应用。 油墨、染料及油漆颜料的制造及铬法制革、电镀、铝阳极化处理和其他金属的清洗等工业都离不开铬化合物,铬化合物还可作为木材的防火剂和阻火剂。这些工业排放的生产废水中自然会含有数量不同的铬,铬在水中以六价(CrO42-)和三价(CrO2-)离子形态存在,工业废水中主要以六价形态存在。 含铬废水的处理方法是先将六价铬还原成三价铬,再使三价铬生成氢氧化物沉淀后去除。对于高浓度含铬废水蒸发回收是一种高浓度有机废水,在技术和经济上均可行的方法,离子交换法可以将含铬废水的排放浓度降到较低的水平。 17、汞 汞又称水银,是一种银白色的液体金属具有升华性质。由于汞具有一些特殊的物理化学性质因此被广泛应用于氯碱、电子、石化、化工、冶炼、仪表、造纸、炸药、农药、纺织、印染、化肥、电器、制药、油漆、毛皮加工等工业的生产过程中。例如在化工和石油化工业中,汞被用作塑料生产及加氢、脱氢、磺化等反应的催化剂,这些工业排放的生产废水中自然会含有数量不等的汞。 处理含汞废水的常用方法有硫化物沉淀法、微电解离子交换法、吸附混凝法、还原过滤法、活性炭吸附法及微生物浓集法等。 18、有机氯 有机氯化合物包括氯代烷烃、氯代烯烃、氯代芳香烃及有机氯杀虫剂等,其中对环境影响较大的是有机氯杀虫剂和多氯联苯,主要来自农药、染料、塑料、合成橡胶、化工、化纤等工业排放的废水中。 有机氯废水主要用焚烧法处理,焚烧产物为氯化氢和二氧化碳,为回收和处理焚烧产生的氯化氢,焚烧的具体方法有焚烧-烟气碱中和法、焚烧-回收无水氯化氢法和焚烧-烟气回收盐酸法。 19、苯并芘 苯并芘,简称BaP,是多环芳烃PAH中具有代表性的强致癌稠环芳烃。自然水中BaP的来源可分为人为源和天然源两种,前者主要来自于有机物的不完全燃烧,后者主要来自自然规律的生物合成。因此,在有有机物的不完全燃烧的行业,比如说炼油、焦化、等工业废水及氨厂、机砖厂、机场等排放的废水中不同程度地存在BaP。 BaP虽然毒性较大但去除相对简单和容易,臭氧、液氯、二氧化氯的高级氧化作用和活性炭吸附、絮凝沉淀及活性污泥法处理,均能有效去除废水中的BaP。 20、镉 镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好,而且镀层均匀光洁等特点,因此工业上90%的镉用于电镀、颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、油漆、合金、陶瓷与无机颜料制造、电镀、纺织印染等工业的生产过程中。 含镉废水处理方法有氢氧化物或硫化物沉淀法、吸附法、离子交换法、氧化还原法、铁氧化体法、膜分离法和生化法等,对于高浓度或经过离子交换后浓缩的含镉废水,电解及蒸发回收法也是一种切实可行的方法。 21、砷 砷呈灰色金属光泽,不溶于水,但有多种含砷化合物易溶于水。无机砷主要以亚砷酸离子和砷酸离子的形式存在于水中,在存在溶解氧的条件下,亚砷酸可以被氧化成毒性较低的砷酸盐。砷酸和砷酸盐存在于冶金、玻璃仪器、陶瓷、皮革、化工、肥料、石油炼制、合金、硫酸、皮毛、染料和农药等行业的工业废水中。 砷的常规处理方法有石灰或硫化物沉淀,或者用铁或铝的氢氧化物共沉淀,废水处理传统的絮凝过程也可以有效去除废水中的砷,另外利用活性炭或矾土的吸附以及离子交换,对废水中砷的去除也取得了不同程度上的成功。 近年来,利用生化法处理含砷废水的研究已取得了进展,实验证明活性污泥法对砷的去除极为迅速,在0.5小时内可以去除总量的80%左右,在1~2小时左右达到平衡状态,即砷与污泥短时间接触后就有大量的去除效果。不过,活性污泥对低浓度砷的去除率明显高于对高浓度砷的去除率,这也说明污泥对砷的去除能力也是有限的。