《美国国家标准与技术研究院(NIST)为月球上的精确计时系统制定了蓝图,作为建设月球GPS的第一步》

  • 编译者: 李晓萌
  • 发布时间:2024-09-11
  • 几十年来,月球微妙的引力带来了一个棘手的挑战,那就是原子钟的运转在月球表面的时候要比在地球上每天快约56微秒。这种极其微小的差异看起来似乎并不起眼,但它可能会干扰类似航天器着陆和与地球通信等重要活动所需的精确计时。

    近日,美国国家标准与技术研究院(NIST)的研究人员已经制定了一套在月球上精确计时的计划,为以后用于月球探测的类似GPS导航系统建设指明了方向。该研究发表在《The Astronomical Journal》期刊上,重点是定义创建月球坐标时间系统所需的理论框架和数学模型。

    这项创新对于美国宇航局雄心勃勃的阿尔忒弥斯计划至关重要,该计划的目标是在月球上建立常态化的驻留机制,并可能成为探索宇宙的重要垫脚石。

    月球坐标时间

    地球上的GPS非常依赖于精确的计时。GPS 星座中的每颗卫星都携带与公共时间基准同步的原子钟。通过测量来自多颗卫星的信号到达接收器所需要的时间,GPS 就可以确定接收器的位置和时间。然而,由于相对论中提到的引力效应,在月球上实施类似的系统,并将其准确地与地球上的系统相关联,就变成了一项独特的挑战。

    爱因斯坦的相对论指出,引力会影响时间的流逝。对于每个人来说,时间不会均匀地流逝。例如,在月球上,由于重力比地球上弱,时钟的滴答声会稍微快一些。此外,由于包括月球绕地球的轨道和地球绕太阳的轨道在内的多种引力效应的叠加,使地球上的观察者与月球上的观察者测量时间的方式略有不同。这些效应会随着时间的推移对导航和通信的精确性产生显著的影响。

    为了解决这个问题,NIST的研究人员创建了一个系统,以建立并实施考虑到月球独特引力环境的月球时间。这个系统建立了一个新的主“月球时间”,作为整个月球表面的计时参考,类似于地球上协调世界时(UTC)的功能。

    “这就像是让整个月球同步到一个针对月球重力调整的‘时区’,而不是让时钟逐渐与地球的时间失去同步。”NIST物理学家Bijunath Patla表示。

    “这项工作为采用类似于GPS的导航和计时系统奠定了基础,该系统将为近地和地球用户提供月球探测服务。”NIST物理学家Neil Ashby表示。

    新的提案将是开发“月球定位系统”的第一步,该系统将包括在月球表面和月球轨道上特定位置的高精度时钟网络。这些在月球轨道上的精确原子钟将充当月球GPS网络的“卫星”,为导航提供准确的授时信号。

    精确的月球导航和定位可以实现更准确的着陆和更高效的月球资源探索。如果没有这个“月球GPS”,如果没有这个“月球GPS”,在月球上着陆和操作就会像在没有任何定位系统的情况下试图在地球上导航一样——你只能对自己的位置有一个粗略的判断,这使得想要准确的执行复杂操作或进行长途旅行变得极其困难。

    “我们的目标是确保航天器的能够降落在距离预定着陆点几米的范围内。” Patla表示。

相关报告
  • 《美国国家标准与技术研究院(NIST)研究人员开发了一种新型频率梳,有望进一步提高计时的准确性》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 被称为频率梳的芯片设备,以无与伦比的精度测量光波的频率,已经彻底改变了计时,探测太阳系外的行星和高速光通信。 近日,美国国家标准与技术研究院(NIST)的科学家和他们的合作者已经开发出了一种制造这种梳子的新方法,有望提高它们已经非常精确的精度,并允许它们测量以前无法达到的频率范围内的光。扩大的范围将使频率梳探测细胞和其他生物材料。 这种新设备是在一个小玻璃芯片上制造的,与以前基于芯片的频率梳(也被称为微型梳)的工作方式完全不同。 频率梳就像光的尺子。就像普通尺子上均匀间隔的刻度可以测量物体的长度一样,微梳上均匀间隔的频率尖峰可以测量光波的振荡或频率。 研究人员通常使用三个元素来构建微梳:单个激光器,称为泵浦激光器;一个微小的环形谐振器,最重要的元素;以及在两者之间传输光的微型波导。注入波导的激光进入谐振器并绕环运动。通过仔细调整激光的频率,环内的光可以变成一个孤波——一个在移动时保持其形状的孤波脉冲。 每当孤子绕环转一圈,就会有一部分脉冲分离出来,进入波导。很快,一串类似尖峰的窄脉冲就会填满波导,每个尖峰在时间上间隔相同的固定时间——也就是孤子完成一圈所需的时间。这些尖峰对应于一组均匀间隔的频率,并形成频率梳的刻度或“齿”。 这种产生微梳的方法虽然有效,但只能产生以泵浦激光频率为中心的频率范围内的梳。为了克服这一限制,NIST的研究人员gracimory Moille和Kartik Srinivasan与新西兰奥克兰大学的Miro Erkintalo和Dodd-Walls光子与量子技术中心领导的一个国际研究小组合作,从理论上预测了一种产生孤子微梳子的新过程,然后通过实验证明了这一过程。新方法不是使用单一的激光器,而是使用两个泵浦激光器,每一个都以不同的频率发射光。这两种频率之间复杂的相互作用产生了一个中心频率恰好位于两种激光颜色之间的孤子。 这种方法使科学家能够在不再受泵浦激光器限制的频率范围内制造出具有新特性的梳子。通过产生与注入泵浦激光不同频率的梳状结构,该装置可以让科学家研究生物化合物的组成。 除了这种实际优势之外,这种新型微梳(被称为参数驱动微梳)背后的物理原理可能会导致其他重要的进步。一个例子是与微梳单个齿相关的噪声的潜在改善。 在单激光产生的齿梳中,泵浦激光直接只雕刻中心齿。因此,离梳子中心越远,牙齿就越宽。这是不可取的,因为较宽的牙齿不能像较窄的牙齿那样精确地测量频率。 在新的梳状系统中,两个泵浦激光器塑造每个齿。根据理论,这将产生一组同样窄的牙齿,从而提高测量的准确性。研究人员现在正在测试这一理论预测是否适用于他们制造的微型梳子。 双激光系统提供了另一个潜在的优势:它产生的孤子有两种类型,可以比作有正号或负号。一个特定的孤子是负的还是正的纯粹是随机的,因为它是由两个激光之间相互作用的量子特性产生的。这可能使孤子形成一个完美的随机数生成器,它在创建安全密码和解决一些统计和量子问题方面起着关键作用,否则用普通的非量子计算机是不可能解决的。 研究人员在3月14日的《Nature Photonics》网络版上描述了他们的工作(DOI:  https://doi.org/10.1038/s41566-024-01401-6)。该团队包括来自比利时布鲁塞尔自由大学的franois Leo和他的同事,法国第戎的勃艮第大学的Julien Fatome,以及来自NIST和马里兰大学合作研究的联合量子研究所的科学家。
  • 《美国国家标准与技术研究院(NIST)通过地球观测卫星接收到的月球亮度的新测量值作为基准来更准确地观察地球》

    • 编译者:张宇
    • 发布时间:2025-06-24
    • 近日,美国国家标准与技术研究院(NIST)基于最新收集的有关月光、深空和远在云层上方的大量观测数据用于改善地球上的天气预报、矿产勘探和农业生产。 现在,NIST对月球亮度的测量比以前可用的数据准确10倍,这对工程师来说是一种宝贵的资源,他们可以使用这些数据来校准地球观测卫星上的视觉传感器。适当的校准有助于确保这些卫星准确记录来自地面、水域和远处植被的实际光量和颜色数据。NIST通过在NASA的高轨道飞行器上部署其设备来获得一套新的月光观测数据。 “我们发布这些数据的目标是帮助卫星行业开发更好的月球亮度观测模型,”美国国家标准与技术研究院(NIST)该项目的小组负责人乔·赖斯(Joe Rice)说。“使用这些数据将有助于确保科学家更准确地了解来自轨道上拍摄的地球图像的实际含义。” 在使用卫星拍摄地球的可靠图像数据之前,需要对卫星的图像传感器进行校准以确保它们所记录数据的准确性。如果没有这个至关重要的步骤,传感器可能会显示一大片地区的颜色深浅或强度与实际情况不同,从而导致农民或勘探工作者基于这种不准确的信息做出错误的决策。 有时,工程师会在发射前进行校准,但这需要耗费很多时间、金钱和精力,部分原因是搭乘火箭前往太空会给卫星带来很大的压力。发射时的加速会使卫星不得不承受数倍的地心引力,而飞行过程中的强烈振动会使仪器产生剧烈的摇晃,这可能会降低或抵消校准的效果。 较大的卫星可能会携带允许它们在发射后进行自我校准的设备,但此类设备会增加重量并占用宝贵的内部空间。而且并非所有卫星的设计结构中都给这类设备预留的足够大的空间。在由几个边长为10厘米的立方体模块构建的卫星结构中,有效载荷的空间通常都非常珍贵。 一种更简单的方法是利用来自月球的光,它的反射特性随时间产生的变化很小,因此提供了一个稳定的基准。卫星传感器有时可能会拍摄包含月球的图像,并且可以根据从月球表面反射的不同波长的光来校准传感器。 陆基望远镜难以获得月球亮度观测的准确细节,因为我们星球不断变化的大气层带来了太多的不确定性。因此,NIST物理学家约翰·伍德沃德(John Woodward)和他的同事们安排将一台特殊的望远镜安装在飞行高度为7万英尺(21公里)的NASA ER-2飞行器上,这一高度可以排除95%的大气层影响。这项任务被称为机载月面反射光谱观测任务(air-LUSI),从NASA的阿姆斯特朗飞行研究中心起飞。经过数年的工程设计和试飞,该项目最终于2022年开始收集数据,并于2025年初进行了最新的一次在轨观测。 与以前的月球亮度观测模型相比,优化的模型所观测到的数据集有了明显的改进,这些模型被设计为擅长进行观测数据处理,数据中可以显示出传感器的性能如何随时间变化,但很难确定地球本身是否发生了变化以及如何产生的变化。新数据不仅降低了地面数据固有的不确定性,而且还与国际单位制(SI)紧密相连,使其更易于应用。 “这个数据集的准确性比人们以前使用的数据高10倍,”伍德沃德说。“它将推动我们对校准卫星的其他方式进行更有效的改进。” 该数据集现在可通过NIST的数据门户网站获得,采用科学界广泛使用的netCDF格式。它包含月面反射光谱测量值以及与之相关的时间、位置和不确定性信息。它还包含了有关NIST所使用仪器的信息,以帮助人们将其与自己的传感器性能进行对比。此外,还提供了有关如何读取和显示数据的详细信息,以及引导用户开始使用该数据的指南。 伍德沃德说,他对该数据集未来的使用前景持乐观态度。原因之一是,卫星之间准确且一致的校准能力,将使地面观测者能够更有效地发现数据集中所揭示的变化趋势。 “卫星是昂贵的国家资产,你希望它们尽可能有用,”他说。“如果我们使用月球来校准它们,卫星观测可能会变得更有价值。例如,我们会知道农田的颜色是否因为雨水改善了作物健康状况,而不是因为两颗不同的卫星在不同的时间拍摄了两张不同的图像。 air-LUSI项目是美国国家航空航天局(NASA)、美国国家标准与技术研究院(NIST)、美国地质调查局(USGS)、马里兰大学巴尔的摩县分校和加拿大安大略省麦克马斯特大学的科学家和工程师之间的合作项目。