《中国科学院团队开发并测试了名为QiMeng的AI芯片设计系统,该系统利用AI技术将用户需求转化为处理器芯片的架构设计,并生成运行软件,旨在加速芯片设计过程并降低成本。》

  • 编译者: AI智能小编
  • 发布时间:2025-06-12
  • 中国科学院的一个工程师、AI专家和芯片设计研究团队设计、建造并测试了他们称之为首个基于AI的芯片设计系统,并在arXiv预印本服务器上发表了一篇描述该系统的论文。这一系统名为QiMeng,它通过多模态架构来理解和生成文本和图数据,并通过双环机制进行反馈驱动推理,包括外部性能反馈环和内部功能正确性反馈环。 过去几十年里,集成电路制造商开发了用于计算机、智能手机和其他电子设备的处理器芯片开发系统。这些系统通常由大量高技能人员组成,他们可以将设计想法(如更快的计算或运行AI应用)转化为可以在特定设计的工厂中制造的物理设计。然而,这个过程以其缓慢和昂贵而闻名。近年来,计算机和设备制造商一直在寻找加速这一过程的方法,并允许更大的灵活性——例如,有些人可能希望芯片只做一件事,但做得非常好。 在这一新的研究中,中国团队将AI应用于这一问题。工作涉及使用大语言模型(LLM)将用户关于性能标准的要求转化为满足规格的处理器芯片的架构计划,并创建运行在其上的软件。这项计划是在科学家们面临西方国家不愿与他们分享技术收益的压力下启动的。新系统有三个相互连接的部分:一个是领域特定的芯片模型;另一个是负责大部分设计工作的设计代理;第三个是一组可用的设计应用程序。
相关报告
  • 《AI芯片巨头争霸时代,华为AI芯片下周将首次亮相》

    • 来源专题:集成电路
    • 编译者:tengfei
    • 发布时间:2017-11-20
    • 近日,华为高级副总裁余承东在微博上发布了一段视频,为自家的人工智能AI芯片造势。他表示,“速度之追求,从不止于想象”,并预告了AI芯片将在9月2日IFA2017上亮相。 在上月的华为年中业绩媒体沟通会上,余承东透露,将于今年秋季发布AI芯片,华为也将是第一家在智能手机中引入人工智能处理器的厂商。此外,在2017年中国互联网大会上,余承东还曾表示,由华为海思制造的芯片将会集CPU、GPU和AI功能于一体,并且有可能基于ARM今年在Computex展会上推出的全新AI芯片设计。 根据今日余承东视频透露,华为的AI处理器有望显著提升麒麟970的数据处理速度。如果AI芯片能用在10月份发布的华为Mate 10手机上,则华为Mate 10的数据处理能力将十分令人期待。 与华为一样,当下英特尔、联想、英伟达、谷歌、微软等全球科技巨头纷纷在积极拥抱AI,对AI芯片的布局成为重中之重。 英特尔 对于AI芯片的重要性,英特尔中国研究院院长宋继强本月接受媒体新智元采访时指出,我们需要用技术去处理大量数据,使其对客户产生价值,在这个过程中无疑芯片是极其重要的: 到2020年,保守估计,全世界会有500亿设备互联。未来的数据来源于各种设备终端。不再靠我们人打电话、玩手机、发邮件这些数据。无人车、智能家居,摄像头等都在产生数据。 以后每一台无人驾驶汽车都是一台服务器,每台车每天会超过4000个GB的数据,这些数据都不可能通过5G来传输,所以一定很多数据是在本地处理和分析然后选择性的往上走,本地你会使用很多技术,超越现代服务器的技术。 作为传统的芯片龙头制造商,英特尔今年7月推出了新一代Xeon服务器芯片,性能大幅提升,深度学习能力是上一代服务器的2.2倍,可接受培训和推理任务。此外,英特尔还展示了将在未来AI领域发挥重大作用的现场可编程门阵列(FPGA)技术,同时,计划推出Lake Crest处理器,旨在深度学习代码。 联想 联想集团总裁杨元庆表示,“AI通用处理器芯片是人工智能时代的战略制高点“,联想集团高级副总裁、联想创投集团总裁贺志强也指出: 智能互联网时代,AI芯片是人工智能的引擎,对于智能互联网的发展将起到决定性作用。 就在上周,联想创投与阿里巴巴创投等顶尖投资方一起,联合投资了有“全球AI芯片界首个独角兽”之称的寒武纪科技。 英伟达 英伟达在过去几年中将其业务重心转移到AI和深度学习领域,今年5月,英伟达发布了一款针对人工智能应用的重量级处理器:Tesla V100。 该芯片拥有210亿个晶体管,性能比英伟达一年前发布的带150亿个晶体管的Pascal处理器强大得多。虽然只有Apple Watch智能手表的表面那么大,但它拥有5120个CUDA(统计计算设备架构)处理核心,双精度浮点运算性能达每秒7.5万亿次。英伟达CEO黄仁勋表示,英伟达花了30亿美元打造这款芯片,售价将会是14.9万美元。 谷歌 宣布战略转向“AI first”的谷歌,在去年就发布了专门为机器学习定制的TPU(张量处理单元),与CPU、GPU相比,TPU效率提高了15-30倍,能耗降低了30-80倍。 今年5月的谷歌开发者大会上,谷歌发布了新款产品——Cloud TPU,它拥有四个处理芯片,每秒可完成180 tflops计算任务。将64个Cloud TPU相互连接可组成谷歌称之为Pod的超级计算机,Pod将拥有11.5 petaflops的计算能力(1 petaflops为每秒进行1015次浮点运算)——这对AI领域的研究来说将是非常重要的基础性工具。 目前,TPU已经部署到了几乎所有谷歌的产品中,包括Google搜索、Google Assistant,甚至在AlphaGo与李世石的围棋大战中,TPU也起到了关键作用。 微软 上月,媒体报道称,微软将为下一代HoloLens加入一款自主设计的AI协处理器,可以在本地分析用户在设备上看到和听到的内容,再也不需要浪费时间把数据传到云端进行处理。这款AI芯片目前正在开发,未来将被包含在下一代HoloLens的全息处理单元(HPU)当中。微软表示,这款AI协处理器将会是微软为移动设备设计的首款芯片。 近几年来,微软一直在致力于开发自己的AI芯片:曾为Xbox Kinect游戏系统开发了一套动作追踪处理器;为了在云服务方面与Google、亚马逊竞争,微软专门定制了一套现场可编程门阵列(FPGA)。此外,微软还从英特尔的子公司Altera处购置可编程芯片,写入定制化的软件来适应需求。 去年,微软曾在一次大会上使用数千个AI芯片,把所有英文维基百科翻译成西班牙语,大概有500万篇文章,而翻译时间不到0.1秒。接下来,微软希望能让使用微软云的客户通过AI芯片来完成任务,比如从海量数据中识别图像,或者通过机器学习算法来预测消费者的购买模型。
  • 《中国科学院自主设计首款主打极低比特技术的人工智能芯片原型》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-05-31
    • 中国科学院自动化研究所南京人工智能芯片创新研究院AiRiA自主设计的首款主打极低比特技术的人工智能芯片QNPU(Quantized Neural Process Unit)原型,及四路人车识别、车载辅助驾驶ADAS系统,终端AI功能加速器QEngine和人工智能人体骨骼实时识别交互系统,近期在世界智能大会和世界半导体大会上展出,获得了众多专业人士的肯定和赞扬。 QNPU采用国际领先的量化模型压缩处理技术,实现了DDR Free设计,突破了内存墙的世界难题,不但能够满足边缘端设备低功耗、低时延、小体积、低成本的诉求,并能提供其执行AI任务所需的高运算能力。QNPU可应用到智能安防、无人驾驶、智慧医疗、智慧商业、智慧城市等多种IoT的边缘端计算场景,助力各行业“用上AI,用好AI”。 同时,AiRiA还研发了基于QNPU原型的四路人车识别模块,可进行1080P分辨率的视频流实时分析。 AiRiA车载辅助驾驶ADAS系统是基于机器视觉720P双路视频实时处理的人工智能系统。在驾驶过程中能够自动识别道路情况,包括:道路标志线、信号灯、人车距离等,可以实现前向碰撞报警、车距过近报警、车道偏离报警等。同时该系统采用DrivingProbe专利技术,对驾驶员警觉性监测,识别抽烟、喝水、打/看电话、打斗等状态,监控安全驾驶。 AI功能加速器QEngine是适用于终端设备的高性能、轻量级、无依赖的深度学习计算框架。与常用框架相比,QEngine性能高2-4倍,减少65%-85%的内存占用,使AI终端设备待电时间更长,机器视觉识别更加迅速。QEngine支持业内多种开源的深度学习框架,算法移植简易,并兼容多种处理器和硬件。 AiRiA人工智能人体骨骼实时识别交互系统,对人体骨骼姿态进行实时跟踪,识别人体骨骼25个结构点,毫秒级时延,并能支持多人同时检测,对身体部分遮挡部位进行智能预测。该系统可应用于翻越、打斗、摔倒等异常行为的检测,运动及舞蹈的教学矫正,体感游戏,3D试衣等场景。 自动化所南京人工智能芯片创新研究院AiRiA,依托自动化所在芯片开发、计算架构、人工智能、机器视觉等领域数十年的核心技术积累,致力于为行业提供软硬一体化的人工智能解决方案。在成本、功耗、计算结构等方面进行探索,让“高大上”的AI广泛、便利地应用到各行业,普惠公众。