《苏州医工所检验室在宫颈癌放疗结合光热治疗的研究上取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2017-11-02
  • 宫颈癌是一种常见的致死性疾病,每年有大约 500000人被确诊为宫颈癌,而平均死于宫颈癌的患者每年竟高达近 300000人。放疗是一种治疗宫颈癌的重要手段,尤其是针对那些宫颈癌早期的患者以及那些不适合手术的人群。然而,传统的放疗治疗效果有限,并且存在着严重的毒副作用。这是由于当射线照射肿瘤部位时,只有一小部分射线被肿瘤组织吸收,而大部分射线通过了正常组织而引起了系统毒性。因此,提高肿瘤组织对放疗的敏感性,开发肿瘤组织靶向的放射治疗,并协同其他安全有效的治疗模式是提高宫颈癌治疗效果并降低毒副作用的关键。光热治疗,作为一种由近红外光介导的物理治疗,可以通过产生局部高温而杀死肿瘤细胞而不引起正常组织的损失。有研究表明,高温可以增加肿瘤组织对放疗的敏感性。因此,放疗结合光热治疗是一种极具吸引力治疗手段。然后,寻找一种合适的药剂既能同时驾驭两种治疗模式又能提高放疗的靶向性并增加放疗的敏感性依旧是一个难题。

      最近,苏州医工所检验室董文飞研究员课题组与苏州市立医院物理师胡睿根据临床实际情况,构建了一种核壳型的磁金纳米平台。利用金纳米材料的表面等离子共振效应以及光电效应,实现了对宫颈癌的光热治疗与放疗增敏。并利用四氧化三铁核心的高磁响应性能,通过外加磁场,提高了该纳米粒子对肿瘤细胞的靶向性。董文飞课题组通过该纳米粒子开发了高效安全的宫颈癌治疗模式。

      实验表明,该磁金纳米颗粒具有均一的球形形貌,极强的磁性,极好的生物相容性以及高效的光热转化能力。在细胞实验中,低浓度的纳米颗粒在短时间的近红外光照射下就可以导致大量的宫颈癌细胞死亡。当结合放疗后,该纳米粒子展现了协同的抗肿瘤效果。同时,外加磁场进一步增强了这种协同治疗对宫颈癌细胞的抑制。因此,我们可以得出结论:磁金纳米颗粒在宫颈癌的靶向协同治疗上,具有极好的临床转化前景。相关工作已发表在 Nanomaterials( Nanomaterials 2017, 7(5), 111; doi:10.3390/nano7050111)上。

相关报告
  • 《苏州医工所医学检验室在基于铜纳米簇的酶活性检测研究中取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-08
    • 近年来,金属纳米簇作为一种新兴的纳米材料逐渐成为生物传感与生物成像等领域的研究热点。金属纳米簇通常是由两个至几十个原子构成的纳米颗粒,尺寸一般不超过 2nm,介于金属原子和纳米颗粒之间。金属纳米簇具有特殊尺寸,因此连续电子能级会分裂成离散能级使其具有特殊的光学以及电学性质。目前常用的金属纳米簇主要包括金纳米簇、银纳米簇以及铜纳米簇,其中铜纳米簇比金、银纳米簇具备更多的优点,如成本极低、生物安全性高及反应条件更加接近生理环境等。因此,铜纳米簇作为一种新型纳米探针在金属离子、生物小分子、蛋白质、核酸、酶的分析检测以及细胞成像等领域具有广阔的应用前景。   苏州医工所医学检验室的杨大威等科研人员以 DNA为模板、硫酸铜为原料、抗坏血酸为还原剂合成了铜纳米簇,并基于该铜纳米簇分别实现了碱性磷酸酶及核酸内切酶的活性检测。   碱性磷酸酶是一种广泛分布在生物膜上的酶,可以催化核酸、蛋白质等分子脱掉磷酸基团。碱性磷酸酶可以参与信号传导、细胞生长及凋亡等过程,同时可以作为肝炎、前列腺癌及骨癌的诊断标记分子。因此实现碱性磷酸酶活性的超灵敏检测在基础生物学研究及临床诊断方面均有重要意义。目前碱性磷酸酶活性检测的主要方法为比色法、电化学法及表面增强拉曼光谱法,这些方法均需要专业的设备,且灵敏度不能令人满意。因此发展成本低廉、操作简单、灵敏度高的碱性磷酸酶显得尤为重要。科研人员首先基于合成的铜纳米簇的荧光特性,实现了碱性磷酸酶活性的灵敏检测。在这一工作中,碱性磷酸酶的存在,可以将无还原性的磷酸 -抗坏血酸水解为具有还原性的抗坏血酸,进而将 Cu2+还原为 Cu+,接着触发“点击化学”反应,生成长链 DNA,以此为模板合成铜纳米簇,通过检测铜纳米簇的荧光信号实现碱性磷酸酶的超灵敏检测。该检测体系的检测范围为 0.1-40 U/mL,检测限为 0.05 U/mL。   EcoRI核酸内切酶是一种常用的限制性核酸内切酶,可以识别特殊的核酸位点,剪切磷酸二酯键。核酸内切酶作为一种重要的工具酶,可广泛参与 DNA复制、重组,分子克隆以及基因编辑等过程中。因此实现核酸内切酶活性的检测在基础分子生物学研究及临床诊断方面均具有重要的意义。目前核酸内切酶活性检测常用的方法包括凝胶电泳法、高效液相色谱法、酶联免疫吸附法、比色法以及电化学发光法,然而这些方法均具有操作复杂、原料昂贵以及灵敏度低等缺点。因此设计简单易行、灵敏度高的核酸内切酶活性检测方法尤为必要。科研人员以双链 DNA为模板合成的铜纳米簇作为电信号探针,用电化学手段实现了核酸内切酶活性的灵敏检测。在这一工作中,首先将双链 DNA修饰在金电极上,当核酸内切酶不存在时,以金电极上的双链 DNA为模板可以合成铜纳米簇,铜纳米簇可以溶解沉积到玻碳电极上,进而可以检测其电化学信号。当核酸内切酶存在时,其可以识别和剪切电极表面上的双链 DNA,电极表面铜纳米簇不能生成,即不能检测到电化学信号。因此,在这一检测方法中可以通过检测电化学信号的强弱实现核酸内切酶活性的检测,该检测体系的检测范围为 10-3-10 U/mL,检测限为 10-3 U/mL。   相关工作已发表( ACS Appl. Nano Mater. 2018, 1, 168−174; Analyst, 2018, 143, 1685-1690)。以上工作得到了国家重大科研装备研制项目 (ZDYZ2013-1),国家自然科学基金 (81771929)等项目的支持。
  • 《苏州医工所杨晓冬课题组在放疗影像配准模型研究中取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-21
    •   放射治疗是利用射线对肿瘤细胞进行定点清除的技术,是癌症治疗的重要技术手段。为了实现最大化照射肿瘤病灶同时保护周围组织和器官,基于多模态影像(计算机断层成像(CT),磁共振(MRI),超声(US)以及锥形束CT(CBCT))等引导的放疗技术受到了极大关注。其中,锥形束CT(CBCT)图像具有骨组织对比度高,空间分辨率高等优势,相比于其他影像引导技术,CBCT图像引导放疗是目前使用最广的图像引导技术。放疗医师通过将定位CT图像与治疗实施阶段扫描的CBCT图像进行刚性或弹性配准,进行分次治疗间的摆位及剂量验证,使得肿瘤的精准放疗成为可能。   然而,由于CT和CBCT图像之间的灰度差异、结构信息不一致、CBCT图像质量差等因素的干扰,快速准确的CT-to-CBCT图像配准算法研究仍然具有很大的挑战性(如图一所示,在CBCT和CT相同解剖位置处,CBCT图像中存在较为严重的伪影)。传统配准算法普遍采用迭代式的优化算法,运行时间较长,实时性差。目前,相关研究工作前沿主要集中于利用深度学习理论研究快速、准确的配准方法。但是,这些工作面对CBCT和CT图像域之间的分布差异、以及CBCT中的噪声伪影干扰,并没有进行深入研究。 针对此问题,苏州医工所杨晓冬课题组提出了一种基于边界梯度引导和跨域特征融合的配准算法。该算法整体结构如图2所示,包含两个重要模块:边界引导注意力模块(EGAM)和跨域注意力模块(CDAM),共同组成了跨域融合的配准网络。该网络分别利用两个相同结构的卷积流,以非耦合的方式分别提取CT和CBCT两个图像域中特有的图像特征。此外,边界引导注意力模块充分挖掘梯度图像的边界信息,引导配准网络建模CT和CBCT中相关解剖结构之间的对应关系,并抑制CBCT中的噪声伪影;跨域注意力模块利用全局和局部信息引导来自两个图像域的特征映射至一个公共空间,以缓解图像域之间的分布差异。   该算法在真实的临床CT-CBCT数据集上进行实验,与其他先进的配准方法相比取得了最优性能。与传统的配准方法相比,该方法在TRE、DSC、以及MHD指标上均获得显著提升。其中,TRE误差从4.00mm降低至2.27mm,DSC指标从74.02%提升到了80.01%,MHD距离也从1.62mm降低至1.50mm。在同样的硬件条件下,该方法在运行速度上有近10倍的提升。此外,该算法还在公开肺部4D-CT数据集(Dir-Lab)上取得了具有竞争力的配准性能,展现了该方法在单模图像配准中的潜力。未来,团队将会针对图像引导放疗中多模态影像配准的痛点问题,进行更加深入的研究,助力临床放疗精度和疗效的提升。  该研究成果“CDFRegNet: A Cross-domain Fusion Registration Network for CT-to-CBCT Image Registration.” 已发表在Computer Methods and Programs in Biomedicine杂志上。论文第一作者为研究生曹玉柱,苏州医工所郑健研究员与常州二院倪昕晔教授为通讯作者。该项工作受到山东省自然科学基金(ZR2021MH213)、苏州市科学技术局(SS202087, SJC2021023)、江苏省卫健委(M2020006)、常州市医学物理重点实验室(CM20193005)等项目的经费支持。   论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0169260722004072