A Generalized Discrete Dynamic Model for Human Epidemics
Wenjun Zhang, Zeliang Chen, Yi Lu, Zhongmin Guo, Yanhong Qi, Guoling Wang, Jiahai Lu
doi: https://doi.org/10.1101/2020.02.11.944728
Abstract
A discrete dynamic model for human epidemics was developed in present study. The model included major parameters as transmission strength and its decline parameters, mean incubation period, hospitalization time, non-hospitalization daily mortality, non-hospitalization daily recovery rate, and hospitalization proportion, etc. Sensitivity analysis of the model indicated the total cumulative cases significantly increased with initial transmission strength, hospitalization time. The total cumulative cases significantly decreased with decline of transmission strength and hospitalization proportion, and linearly decreased with non-hospitalization daily mortality and non-hospitalization daily recovery rate. In a certain range, the total cumulative cases significantly increased with mean incubation period. Sensitivity analysis demonstrated that dynamic change of transmission strength is one of the most important and controllable factors. In addition, reducing the delay for hospitalization is much effective in weakening disease epidemic. Non-hospitalization recovery rate is of importance for enhancing immunity to recover from the disease.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.