《bioRxiv,2月21日,A Multiscale and Comparative Model for Receptor Binding of 2019 Novel Coronavirus and the Implication of its Life Cycle in Host Cells》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-02-22
  • A Multiscale and Comparative Model for Receptor Binding of 2019 Novel Coronavirus and the Implication of its Life Cycle in Host Cells

    Zhaoqian Su, Yinghao Wu

    doi: https://doi.org/10.1101/2020.02.20.958272

    Abstract

    The respiratory syndrome caused by a new type of coronavirus has been emerging from China and caused more than 1000 death globally since December 2019. This new virus, called 2019 novel coronavirus (2019-nCoV) uses the same receptor called Angiotensin-converting enzyme 2 (ACE2) to attack humans as the coronavirus that caused the severe acute respiratory syndrome (SARS) seventeen years ago. Both viruses recognize ACE2 through the spike proteins (S-protein) on their surfaces. It was found that the S-protein from the SARS coronavirus (SARS-CoV) bind stronger to ACE2 than 2019-nCoV. However, function of a bio-system is often under kinetic, rather than thermodynamic, control. To address this issue, we constructed a structural model for complex formed between ACE2 and the S-protein from 2019-nCoV, so that the rate of their association can be estimated and compared with the binding of S-protein from SARS-CoV by a multiscale simulation method. Our simulation results suggest that the association of new virus to the receptor is slower than SARS, which is consistent with the experimental data obtained very recently. We further integrated this difference of association rate between virus and receptor into a mathematical model which describes the life cycle of virus in host cells and its interplay with the innate immune system. Interestingly, we found that the slower association between virus and receptor can result in longer incubation period, while still maintaining a relatively higher level of viral concentration in human body. Our computational study therefore provides, from the molecular level, one possible explanation that the new disease by far spread much faster than SARS.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.20.958272v1
相关报告
  • 《BioRxiv,2月21日,Molecular mechanism of evolution and human infection with the novel coronavirus (2019-nCoV)》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-22
    • Molecular mechanism of evolution and human infection with the novel coronavirus (2019-nCoV) Jiahua He, Huanyu Tao, Yumeng Yan, Sheng-You Huang, Yi Xiao doi: https://doi.org/10.1101/2020.02.17.952903 Abstract Since December, 2019, an outbreak of pneumonia caused by the new coronavirus (2019-nCoV) has hit the city of Wuhan in the Hubei Province. With the continuous development of the epidemic, it has become a national public health crisis and calls for urgent antiviral treatments or vaccines. The spike protein on the coronavirus envelope is critical for host cell infection and virus vitality. Previous studies showed that 2019-nCoV is highly homologous to human SARS-CoV and attaches host cells though the binding of the spike receptor binding domain (RBD) domain to the angiotensin-converting enzyme II (ACE2). However, the molecular mechanisms of 2019- nCoV binding to human ACE2 and evolution of 2019-nCoV remain unclear. In this study, we have extensively studied the RBD-ACE2 complex, spike protein, and free RBD systems of 2019-nCoV and SARS-CoV using protein-protein docking and molecular dynamics (MD) simulations. It was shown that the RBD-ACE2 binding free energy for 2019-nCoV is significantly lower than that for SARS-CoV, which is consistent the fact that 2019-nCoV is much more infectious than SARS-CoV. In addition, the spike protein of 2019-nCoV shows a significantly lower free energy than that of SARS-CoV, suggesting that 2019-nCoV is more stable and able to survive a higher temperature than SARS-CoV. This may also provide insights into the evolution of 2019-nCoV because SARS-like coronaviruses are thought to have originated in bats that are known to have a higher body-temperature than humans. It was also revealed that the RBD of 2019-nCoV is much more flexible especially near the binding site and thus will have a higher entropy penalty upon binding ACE2, compared to the RBD of SARS-CoV. That means that 2019-nCoV will be much more temperature-sensitive in terms of human infection than SARS-CoV. With the rising temperature, 2019-nCoV is expected to decrease its infection ability much faster than SARS-CoV, and get controlled more easily. The present findings are expected to be helpful for the disease prevention and control as well as drug and vaccine development of 2019-nCoV. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,2月3日,Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV)》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-04
    • Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV) Qiang Huang, Andreas Herrmann doi: https://doi.org/10.1101/2020.02.01.930537 The outbreaks of 2002/2003 SARS, 2012/2015 MERS and 2019/2020 Wuhan respiratory syndrome clearly indicate that genome evolution of an animal coronavirus (CoV) may enable it to acquire human transmission ability, and thereby cause serious threats to global public health. It is widely accepted that CoV human transmission is driven by the interactions of its spike protein (S-protein) with human receptor on host cell surface; so, quantitative evaluation of these interactions may be used to assess the human transmission capability of CoVs. However, quantitative methods directly using viral genome data are still lacking. Here, we perform large-scale protein-protein docking to quantify the interactions of 2019-nCoV S-protein receptor-binding domain (S-RBD) with human receptor ACE2, based on experimental SARS-CoV S-RBD-ACE2 complex structure. By sampling a large number of thermodynamically probable binding conformations with Monte Carlo algorithm, this approach successfully identified the experimental complex structure as the lowest-energy receptor-binding conformations, and hence established an experiment-based strength reference for evaluating the receptor-binding affinity of 2019-nCoV via comparison with SARS-CoV. Our results show that this binding affinity is about 73% of that of SARS-CoV, supporting that 2019-nCoV may cause human transmission similar to that of SARS-CoV. Thus, this study presents a method for rapidly assessing the human transmission capability of a newly emerged CoV and its mutant strains, and demonstrates that post-genome analysis of protein-protein interactions may provide early scientific guidance for viral prevention and control. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.