《光酶反应促进手性化合物高效合成》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2020-09-10
  • 2020年6月8日Nature报道,美国伊利诺伊大学与厦门大学研究者合作将光催化与酶酶催化相结合,加速分子间碳-碳交叉偶联,实现了γ-手性羰基类化合物的高效绿色合成,而手性分子在化学和制药工业中具有广泛用途。光酶催化拓展了酶催化反应类型,为生物质的升级利用提供了新策略。
    烯烃的自由基加氢烷基化是构造碳-碳键常用的策略,但是自由基中间体反应活性高,反应的化学和立体选择性控制是合成领域的长期关键难题。该研究团队通过可见光激发引发自由基,首次实现自然界中没有的、光酶催化下两个分子的不对称交叉偶联反应。具体说来,研究者直接利用已知的烯烃还原酶(ene-reductase)为生物催化剂,在温和可见光照射条件下,以简单易得的α-卤代碳基化合物和烯烃为起始原料,实现了重要的γ-手性羰基类化合物的高效绿色合成。
    该方法在合成γ-手性羰基类化合物方面具有优异的收率和对映选择性,高达99%的收率是常规化学催化很难达到的。机理研究表明底物/酶复合物的形成是触发可见光诱导的自由基过程的关键步骤,并且酶环境对自由基反应的化学和立体选择性的调控发挥关键作用。这项工作通过将光催化和酶催化相结合,进一步扩展了生物催化在进行有价值的不对称转化反应中的作用。
    吴晓燕 编译自https://www.sciencedaily.com/releases/2020/06/200608134408.htm
    原文链接:https://www.nature.com/articles/s41586-020-2406-6
    原文标题:Photoenzymatic enantioselective intermolecular radical hydroalkylation

相关报告
  • 《Nat.Commun:双中心单原子合金催化剂促进电催化CO2还原中的碳氢化合物形成》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 一、 导读        近年来,在CO 2 氢化生成能量密集型碳氢化合物分子(HCs)的催化反应中,以CO 2 加氢而不产生H 2 为特征的电催化CO 2 还原反应(CO 2 RR)备受关注。铜(Cu)可以高效的催化HCs(特别是C2+)形成的元素,因为它对氢(ΔE H )和羰基(ΔE CO )的结合能都是最佳的,而ΔE H 和ΔE CO 是CO 2 RR过程中普遍存在的中间体。目前,研究发现金属合金化是一种广泛采用的加速CO 2 RR同时合理抑制竞争性析氢反应(HER)的策略。不幸的是,大多数非贵金属组成的Cu合金催化剂通过削弱ΔE CO 从而表现出更倾向甲酸盐或CO生成的选择性。因此,违背了使用 Cu 作为催化金属以实现CO 2 深度加氢的最初目的。目前,部分研究学者提出通过在元素周期表中加入位于Cu左侧的铂族金属(PGMs)来直接解决上述限制问题,因为铂族金属将为CO提供大量的结合能。然而根据动力学分析表明,HER在PGM基团上的反应仍然比CO 2 RR要快的多。因此,从设计PGM-Cu催化中心本身的角度出发,合理设计一种PGM-Cu界面的替代结构实现通过CO 2 RR高效且选择性地生成HCs,并从本质上限制了HER是CO 2 RR最关键的研究之一。 二、 成果掠影    近日,克莱姆森大学Ming Yang和马萨诸塞大学FangLin Che等人提出了一种巧妙的设计,将原子分散的铂族金属物种锚定在多晶和形状可控的Cu催化剂上(PGM 1 -Cu SAAs),该催化剂能通过CO 2  RR来高效的催化碳氢化合物的形成。相关的研究成果以“Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO 2 reduction”为题发表在Nature Communications上。 三、 核心创新点 1、通过一种巧妙设计成功合成出多晶和形状可控的Pt 1 Cu单原子合金(SAAs)纳米催化剂。 Pd 1 Cu SAA 能高效通过 CO 2  RR 轻松地形成CH4和 C 2 H 4 ,同时抑制不必要的析氢反应的发生。值 得注意的是,具有类似金属配方但包含小铂或钯簇的合金将无法实现这一目标; 2、通过形状控制的催化剂合成、原位反应研究和DFT计算分析,当铜表面有相当数量的CO-Pd 1 基团时,CO氢化成CHO或CO-CHO偶联成为Cu(111)或Cu(100)上的主要途径之一, 另外通过Pd-Cu双位点途径选择性产生CH 4 或C 2 H 4 四、 数据概览 图1 多晶 PGM-Cu SAA 的形态和结构分析。a多晶Cu催化剂的FESEM图像及其相应的EDS元素图。b Pd 1 Cu SAA的像差校正 HAADF-STEM 图像。圆圈突出显示单原子Pd。c Pd K-edge EXAFS  ©2023 The Author(s) 图2 电催化CO 2 还原活性比较。多晶 Cu、多晶Pd 1 Cu SAA和形状受控的Pd 1 Cu SAA在不同电压(相对于RHE)下的a C 2  H 4 和b CH 4 的部分电流密度。c CO 2 还原FE% 和电流密度的比较 ©2023 The Author(s) 图3 DFT计算Pd 1 Cu SAA中单原子Pd对调节CO吸附和HER的作用。a , b分别显示CO 在Cu、Pd 1 Cu和Pd的 (100) 和 (111) 面上的吸附能。c , d是 HER 在Cu、Pd 1 Cu和Pd 的 (100) 和 (111) 面上的自由能图  ©2023 The Author(s) 图4 作为扫描电位函数的气态产物实时分析。使用a Cu NP 和 b Pd 1 Cu SAA还原CO 2 时,通过质谱仪检测的循环伏安图和实时碳氢化合物产物分布  ©2023 The Author(s) 图5 CO 2 还原过程中在Cu上的Pd对产物分布的影响。a Cube-Cu 和b Octa-Cu的SEM 图像。c多晶和形状控制的Cu纳米粒子和 Pd 1 Cu SAA的粉末 X 射线衍射图。d Pd K-edge EXAFS(阴影线)和曲线拟合(点)。e CH 4 和C 2 H 4 的FE分布 ©2023 The Author(s) 图6 形状控制的Cu和Pd 1 Cu SAA的原位ATR-SEIRAS。O 2 饱和0.5 M KHCO 3 电解质中Pd 1 Cu SAA和Cu在-0.8 V下作为时间函数收集的较高波数处的光谱a 和较低波数处的光谱b ©2023 The Author(s) 图7 Pd1Cu SAA中单原子 Pd 对反应自由能和活化能垒的DFT计算。a ?Cu(111)、Pd 1 Cu(111)和CO- Pd 1 Cu (111)上CO 加氢(H ?+ CO ?→ CHO +)的反应自由能和活化势垒以及相应的IS、TS 和 FS结构。b C-C偶联(CO  ?+ CHO  ?→ OCCHO  ?+ )在Cu(111)、Pd 1 Cu(111)和CO- Pd 1 Cu (111)上的反应自由能和活化势垒以及相应的IS、TS 和 FS结构 ©2023 The Author(s) 五、 成果启示   综上所述,这项工作提出了一种巧妙的Pt 1 Cu单原子合金 (SAAs) 纳米催化剂的策略。铂族金属虽然在传统上不利于电催化CO 2 加氢,但现在可以作为Cu基体上的合金单原子来利用,以显著地提高反应效率和选择性地产生碳氢化合物,这是许多其他铜基合金无法实现的反应目标。在汽车电气化的大趋势下,铂族金属重型汽车催化剂逐渐被淘汰,这一新发现为铂族金属催化剂应用在全球市场上提供了独特的机会。
  • 《天津工生所在光酶催化合成手性氨基醇方面获进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-24
    •     光酶催化是合成化学领域的研究热点之一,在多种不对称自由基反应尤其是碳-碳键构建方面展现出独有的优势,为多种手性功能分子的合成提供了新思路。现有的光酶催化体系中一般需要辅酶循环系统以及额外的还原牺牲试剂,这增加了化学反应的成本。从绿色合成角度而言,发展氧化-还原中性的反应体系颇具应用前景。     中国科学院天津工业生物技术研究所研究员朱敦明、吴洽庆带领的生物催化与绿色化工研究团队,利用现有酶库资源,建立了氧化-还原中性的光酶催化体系,通过使用有机光敏剂曙红Y(eosin Y)以及来源于Ralstonia sp.细菌的脱氢酶RasADH组合,实现了N-芳基甘氨酸和醛之间的自由基碳-碳偶联反应,高效、高立体选择性地构建了一系列1,2氨基醇产物。该反应体系无需额外添加辅酶循环体系和还原牺牲试剂。相关机理研究实验表明,该反应经历了串联的脱羧自由基偶联和去对称化过程。本工作为探索新的自由基偶联反应以及生物活性分子的合成提供了新思路。     相关研究成果发表在JACS Au上。研究工作得到国家重点研发计划、国家自然科学基金、中国博士后科学基金、科学技术部科技伙伴计划、天津市合成生物技术创新能力提升行动专项的支持。