《揭密华为8项石墨烯相关专利 优势何在?》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-04-16
  • 华为在石墨烯领域的相关专利一览:

    1、一种功能化石墨烯复合材料及其制备方法和应用

    本发明提供了一种功能化石墨烯复合材料,包括石墨烯纳米片、垂直生长于所述石墨烯纳米片上的碳纳米管阵列,以及将所述石墨烯纳米片交联在一起的聚电解质,所述石墨烯纳米片与所述聚电解质之间通过π-π共轭、化学键、氢键、范德华力中的一种或几种作用力连接。

    该功能化石墨烯复合材料可作为锂电池体系负极保护材料,将其包覆于锂电池体系负极活性材料的表面能够起到类似于人工SEI膜的作用,提高负极极片的循环稳定性、延长电池使用寿命;而包覆于金属锂负极表面能够有效避免锂枝晶的形成,进而防止电池短路和库伦效率降低的现象发生。本发明还提供了该功能化石墨烯复合材料的制备方法和应用。

    2、一种硅/石墨烯复合薄膜电极及其制备方法和锂离子电池

    本发明提供了一种硅/石墨烯复合薄膜电极,包括集流体和通过静电自组装形成在所述集流体上的硅/石墨烯复合薄膜,所述硅/石墨烯复合薄膜包括交替层叠设置的至少一层硅薄膜层和至少一层石墨烯薄膜层,所述硅薄膜层通过静电引力结合在所述集流体上或所述石墨烯薄膜层上,所述石墨烯层通过静电引力结合在所述集流体上或所述硅薄膜层上。

    该电极具有高结构稳定性,能够有效缓解硅材料膨胀造成的电极结构破坏,提高电池循环寿命,且具有高比容量和高倍率性能。本发明还提供了该电极的制备方法和包括该电极的锂离子电池。

    3、一种石墨烯增强的一体化电极及其制备方法和电池

    本发明提供了一种石墨烯增强的一体化电极,包括导电材料线性结构体、活性材料线性结构体、及原位生长在导电材料线性结构体和/或活性材料线性结构体表面的石墨烯层,导电材料线性结构体和活性材料线性结构体在三维空间内相互穿插形成线性网络结构,石墨烯层将两种线性结构体连接在一起构成一体化三维线性网络整体,一体化三维线性网络整体具有网络间隙,导电材料线性结构体为具有电子收集作用的集流体材料,活性材料线性结构体为可通过脱嵌离子进行能量存储的材料。

    该一体化电极可有效改善电极活性材料与集流体间的应力界面,具有高能量密度和高循环稳定性。本发明还提供了该一体化电极的制备方法和包含该一体化电极的电池。

    4、一种制备电容器的方法及电容器

    一种制备电容器的方法及电容器,用于解决现有技术中具有凸起结构的电容器难以实现的问题。所述方法包括:

    采用压缩模塑的方式在第一聚合物衬底上形成至少一个凸起结构;在具有所述至少一个凸起结构的所述第一聚合物衬底上形成第一石墨烯层;将具有所述第一石墨烯层的所述第一聚合物衬底、表面具有导电层的第二衬底以及至少两个支撑柱键合在一起,形成所述电容器;

    其中,所述第一石墨烯层与所述导电层相正对,所述至少两个支撑柱由绝缘材料制备,位于所述第一聚合物衬底与所述第二衬底之间,且所述至少两个支撑柱的高度使得所述第一石墨烯层与所述导电层之间具有间隙。

    5、电容式压力传感器及其制备方法

    一种电容式压力传感器,包括:第一柔性衬底(101)、第一石墨烯电极板(102)、绝缘介质层(103)、第二石墨烯电极板(104)和第二柔性衬底(105),其中,该绝缘介质层(103)用于将第一石墨烯电极板(102)和第二石墨烯电极板(104)隔离且保持预定间隔;第一石墨烯电极板(102)和第二石墨烯电极板(104)中分别包括至少一路串联的石墨烯电极,第一石墨烯电极板(102)的至少一路串联的石墨烯电极和第二石墨烯电极板(104)的至少一路串联的石墨烯电极交叉排列,并且该电容式压力传感器的多个电容中的每个电容包括第一石墨烯电极板(102)和第二石墨烯电极板(104)中位于交叉位置的一对相向面对的石墨烯电极。还提供了一种电容式压力传感器的制作方法。

    6、一种锂离子电池用导电粘结剂及其制备方法、锂离子电池电极极片及制备方法和锂离子电池

    本发明提供了一种锂离子电池用导电粘结剂,包括石墨烯以及接枝在所述石墨烯表面的第一粘结剂,所述第一粘结剂包括聚乙烯醇、羧甲基纤维素钠、聚乙二醇、聚乳酸、聚甲基丙烯酸甲酯、聚苯乙烯、聚偏氟乙烯、六氟丙烯聚合物、苯乙烯-丁二烯橡胶、海藻酸钠、淀粉、环糊精和多聚糖中的至少一种。

    该锂离子电池用导电粘结剂兼具良好的导电性能和粘结性能,且具有一定的强度可增强电极极片整体的力学强度,该导电粘结剂实现了粘结剂与导电剂合二为一,因此可提高极片活性物质的含量,进一步提升电芯能量密度。本发明还提供了该导电粘结剂的制备方法,以及包含该导电粘结剂的电极极片和锂离子电池。

    7、一种硅基复合负极片及其制备方法和锂离子二次电池

    本发明提供了一种硅基复合负极片,包括集流体、及设置于集流体上的一维硅基壳核复合结构阵列,所述一维硅基壳核复合结构以原位生长于集流体上的核负极材料为核、以硅基材料为壳,所述核负极材料为碳纳米管、碳纳米纤维、多孔碳、石墨烯、嵌锂金属及合金、钛酸锂、过渡金属氧化物、双金属氧化物、金属硫化物、金属氮化物和金属磷化物中的一种或几种,核负极材料呈一维垂直阵列结构排列在集流体上。

    该硅基复合负极片具有高倍率特性和高循环稳定性,能有效改善硅的低电导率并解决其膨胀造成的粉化与极化问题,提高电极的容量与循环寿命。本发明还提供了该硅基复合负极片的制备方法和包含该硅基复合负极片的锂离子二次电池。

    8、透明电极及其制备方法、显示面板、太阳能电池

    一种透明电极,包括:衬底(1);设置在所述衬底(1)上的石墨烯导电层(2)和由透明材料形成的场效应控制层(3);以及,设置在所述石墨烯导电层(2)和所述场效应控制层(3)之间的电介质层(4);所述场效应控制层(3)在工作状态下带有极性电荷。降低了透明电极的方块电阻。(资料来源:soopat)

    附:专利申请人简介

    华为技术有限公司是全球领先的ICT(信息与通信)基础设施和智能终端提供商,致力于把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界。在通信网络、IT、智能终端和云服务等领域为客户提供有竞争力、安全可信赖的产品、解决方案与服务,与生态伙伴开放合作,持续为客户创造价值,释放个人潜能,丰富家庭生活,激发组织创新。华为坚持围绕客户需求持续创新,加大基础研究投入,厚积薄发,推动世界进步。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=468872
相关报告
  • 《在石墨烯边缘旋转》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-06-04
    • 被称为石墨烯的二维碳具有许多潜在的有用性质,但在原始状态下通常不具有磁性。然而,理论预测表明,当石墨烯片的碳原子呈锯齿状排列时,它们的边缘应该具有磁性。观察这一效应是具有挑战性的,因为很难检测到预测的微小磁信号,而且很难制造出具有所需形状的无缺陷边缘。Slota et al.2在《自然》杂志上发表了一篇论文,报告了一种在溶液中制造纳米尺寸的石墨烯带的方法,从而可以制造出具有清晰的锯齿形边缘的纳米带,这些带带有电子自旋的有机自由基分子修饰着。作者的研究结果为石墨烯边缘的磁性提供了坚实的证据,并表明边缘自旋具有潜在的有用的量子力学。 石墨烯的磁性形式对自旋电子学是有用的,这种技术构成了当今磁性数据存储的基础。但是,在石墨烯中产生磁性边缘状态的主要兴趣在于量子技术。电子自旋相对于外部磁场可以有两个方向,这些方向可以用来编码量子比特(量子比特)的“0”和“1”状态,量子比特是未来量子计算机和量子模拟设备的基本信息单元。 量子位的量子态必须与驱动量子位运算的外部控制刺激物强耦合,但它们也必须与随机的外部扰动相隔离,这些扰动可以不可逆转地打乱量子态的“相干”演化(相干是量子态之间非经典相关性的存在)。在这些方面,石墨烯比其它被研究为自旋量子位(如砷化镓或硅)宿主的材料具有潜在优势:流经石墨烯薄片的电流提供了耦合和操纵自旋的手段;在石墨烯中,两种主要的脱屑源是最小的。这些脱相干源是电子自旋与轨道运动(在石墨烯中较弱)之间的耦合,以及电子自旋与有核自旋原子(在石墨烯中浓度较低)之间的相互作用。 为什么实验上很难观察到磁边缘状态?石墨烯纳米带的电子和磁性与边缘结构密切相关,且对微小缺陷数敏感。要分离出足够数量的具有完美锯齿形边缘的纳米长臂猿,使其具备磁性特征是极具挑战性的,因此此类研究的数据是缺乏的,也是不确定的。在高真空条件下原位制备的单层石墨烯层上进行的实验揭示了在边缘处形成局部电子状态的现象,但没有提供磁性7的任何证据。 Slota等人通过扩展以前开发的一种化学方法7,在具有均匀宽度和锯齿边缘的溶液中合成了石墨烯纳米带。作者将硝基硝基分子——化学上稳定的有机自由基(因为它们携带一个未配对的电子而具有磁性)附着到特定的边缘位点(图1)。作者指出,自由基处的电子自旋会在自由基结合的边缘碳上产生自旋密度,从而产生磁边态。这个技巧类似于在水池的表面上下移动一排软木塞,从而在水池的边缘产生有序的水振荡;软木不仅能引起波浪,还能使它们更容易被视觉化。 ——文章发布于2018年5月30日
  • 《起底广汽集团“石墨烯电池”真相》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-19
    • 上周五(1月15日)尾盘,广汽集团(SH:601238/HK:02238)“石墨烯电池”9月量产的消息引爆市场。当天,A/H两地市场的广汽,A股涨停收盘,港股则收涨19.5%,成交额分别达到10亿和37亿元。 不过市场里弥漫的乐观情绪甚至未持续过24小时。隔天举行的中国电动车百人会论坛上,欧阳明高院士的一番话,迅速为市场的热忱浇下一盆冷水,他说:“如果某一位说,(这个车)既能跑1000公里,又能几分钟充完电,而且还特别安全,成本还非常低,大家不用相信,因为是不可能的。” 图1:受“石墨烯电池”消息促动,广汽股价单日暴涨。来源:百度 “充电8分钟续航1000公里”,“续航1000公里”,广汽集团放出的这颗“电池卫星”究竟是怎么回事? 随着更多业内人加入讨论、官方的进一步解释以及我们在技术维度的研判,目前已大致确认3件事: 1. 广汽所谓“石墨烯电池”说法并不准确,但并非不切实际; 2. 该石墨烯电池主要涉及一项电池负极技术:以石墨烯作为导电添加剂的“硅基复合负极材料技术”。其中,石墨烯作为负极材料中导电添加剂的掺入(最多不超过8%),可以提升电池的高倍率充电性能,即辅助实现所谓的“充电8分钟续航1000公里”;基于“一核双壳”结构工艺的“硅基锂离子负极”,则可以提升电池循环稳定性、结构密度与放电倍率性,即实现所谓的“续航1000公里”。 3. 该电池同时涉及一项快充技术:在以石墨烯为三元锂电池正极材料导电剂基础上,通过一套降温冷却系统,而实现6C快充能力,即一种“充电8分钟续航1000公里”技术。 基于这样的基本事实,我们的结论是:广汽所称的“石墨烯电池”正确的命名应为“掺杂石墨烯的硅基负极锂电池”。这项电池技术并非新技术,但在工艺上有较大突破。该电池所标榜的性能参数,虽然有水分,但也有较大的实现可能性。 01 一颗旧卫星 实际上,长期追踪石墨烯技术的人士都知道,广汽这几天放出的“石墨烯电池”卫星,本身就是一颗“旧卫星”。早在2014年,就有一家名叫Graphenano(中文意为“石墨纳米”)的西班牙公司公司就号称已与该国科尔瓦多大学,联合研发出了全球首件石墨烯聚合材料电池。 在对外推介这件石墨烯电池时,Graphenano使用的参数话术就包括: ◆能量密度超过600wh/kg(即每公斤电芯可产生0.6度电。理论上,500wh/kg可以实现1000公里的真实续航); ◇单次续航里程可高达1000公里; ◆单次完全充电仅需8分钟以内; ◇使用寿命是锂电池的两倍。 …… 不过令人感到遗憾的是,Graphenano与科尔瓦多大学主导的这项实验室技术,迄今仍未走出PPT,时间过去6年多未见落地。 本质上说,无论是2014年的Graphenano还是2021年的广汽,它们所谓的“石墨烯电池”,都是希望通过“核—壳”结构工艺实现石墨烯与硅的结合,作为新的硅基负极材料,部分替代原来完全以石墨为核心的碳基负极材料,以提升锂电池的整体容量和充电速度。 故而,这种电池正确的命名方式应为“掺杂石墨烯的硅基负极锂电池”,本质仍是锂电池(因为使用量最大的核心正极材料未发生变化),而不是石墨烯电池。 图2:石墨烯概念图。来源:百度百科 02 有水分但并非不切实际 欧阳院士的一盆冷水非常及时,因为广汽所称的“1000公里高续航”与“10分钟快充技术”均存在一定水分,而且受制于现实产业链的配套设施不健全难以短期铺开。 但理性地说,广汽前瞻发布的这项“掺杂石墨烯的锂电池”,并非不切实际,“脱水”之后仍有较强的可行性与市场空间。 【1】先说水分:“掺杂石墨烯的锂电池”仍属于过渡技术,性能提升存在天花板。 我们几乎可以断定,在广汽版“掺杂石墨烯的硅基负极锂电池””中,石墨烯的作业是作用导电剂,以减小抗阻性、提升充放电的倍率性,即主要用于提升充电速度。 但对于对锂离子电池来说,石墨烯作为导电剂附着于硅基复合负极材料中(或同样作为导电剂附着于三元锂电正极材料中),没有办法从根本上改变锂离子电池的能量密度,在提升电池整体容量方面只起到辅助性作用。 在提升电池容量(或称能量密度)方面发挥主要作用的,是硅材料(纳米硅)。也就是说,广汽版“掺杂石墨烯的硅基负极锂电池”中,真正的主角是以纳米硅为核心的复合型(其实引入纳米硅后,石墨占比仍超过纳米硅)负极材料。 真正以石墨烯为主体材料的动力电池,目前尚无法在实验室中完全实现。故而,从截至目前的现实路径上看,固态电池的前景(以特斯拉4680无极耳电池为代表)还是要明显优于“掺杂石墨烯的锂电池”,后者只属于一种过渡技术。 一言以蔽,广汽所称的“石墨烯电池”,最核心突破还在于“一核两壳”结构工艺(下文会具体说)的硅基复合型负极材料技术;但鉴于掌管锂电池核心性能指标的还是正极材料,所以这项技术在电池性能提升方面存在显著天花板。 【2】再说现实意义:广汽的硅基复合型负极材料技术工艺以及电池快充技术,拥有理论数据支持,有着较为现实的应用前景与竞争力。 众所周知的是,硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,是石墨类负极材料的12倍多。故而,将纳米硅引入锂电池的负极材料中,部分替代石墨,理论上可以极大提升锂电池的能量密度。 目前,现有电动车的电池系统能量密度普遍为160wh/kg(比亚迪的汉EV电芯能量密度为170wh/kg,特斯拉model 3长续航版为161wh/kg),而广汽基于硅基复合型负极材料技术的“掺杂石墨烯的锂电池”,据说将能实现280wh/kg,即实现了57%的能量密度提升。 如果事实如此,那意味着:参照160wh/kg能量密度所对应的600公里NEDC续航,广汽“掺杂石墨烯的锂电池”的确可以实现1000公里NEDC续航。当然,具体到真实续航,往往还需要打上6、7折。 另外,关于这款电池的快充问题,目前有投资者质疑其是否噱头大于实质。而来自广汽集团方面的技术储备则显示,针对这个问题,它们的秘密武器是一项“包括壳体、液冷结构及设于所述壳体内的多个电芯模组”的动力电池系统实用新型专利技术。 该系统也涉及石墨烯——在正极材料中也添加石墨烯作为导电剂。该系统的核心在于基于石墨烯导电剂的“一套降温冷却系统”,使内部温度的一致性和安全性也能得到保障,进而确保搭载该系统的车辆可在10分钟(6C)内完成快速充电。 图3:不同材料的电阻系数与温度系数,第一列为石墨烯。来源:百度百科 这里简单说下什么是6C快充:目前对于快充并没有一个特别严格的定义,一般可以理解为在小于1小时内充电的制度(即充电速率大于1C),以区别于慢充数小时级的充电。根据早期美国加州空气资源委员会(CARB)的规定,电动汽车快速充电时间为10min(6C)。 不过必须指出得是,快冲技术在当前的实现,不仅取决于电池本身,更取决于高功率充电桩技术的推广。这也在很大程度上,是一个产业链耦合问题,对中国的充电桩行业进一步的技术升级形成挑战与机遇。 最重要的是,广汽这一电池技术,本身对于石墨烯的需求并不特别大,加之最近3年多基础型石墨烯产品的售价大幅降低,所以仅就石墨烯而言,对于成本的制约并不突出。制约这项电池技术的主要成本以及难度,可能来自于电池设备及工艺。 以上,因循谨慎性原则,鉴于固态电池或许至少要在2025年才能商业化,广汽这一“掺杂石墨烯的硅基负极锂电池”如果能够在一年内量产,还是很有竞争力的。 03 可以谨慎乐观 我们之所以对广汽这一电池技术保持谨慎乐观,原因不止是在技术路径上存在差异化竞争窗口期,还在于它的相应自主核心技术确实拥有一定的技术优越性。 根据检索可知,广汽这一系列电池技术,研发已经铺陈4年以上。这从其相关发明专利申请时间可以回推——其核心专利申请至少可以追溯至2018年11月。 更重要的是,通过对其相关核心专利的观察可知,广汽这项电池技术并不是凭空出现,本身也是因循电池技术发展规律而来——主要的技术进步并不在于石墨烯或纳米硅等材料的引入,而是其“一核两壳”技术工艺。 所谓“一核两壳”工艺,具体来说是指其硅基复合负极材料结构,包括内核、第一壳层和第二壳层: ■内核包括硅碳复合材料(满足高克容量及高功率密度锂离子电池); ■第一壳层包括无定形碳层(用于提升导电性,约束内核的体积膨胀改善嵌锂的均匀性); ■第二壳层包括导电聚合物层(石墨烯所在之处,具有较好的韧性,充放电过程中避免无定形碳层开裂的现象,有利于形成稳定的固体电解质膜,进而提升材料的循环稳定性)。 实际上,目前阻碍硅系负极材料大规模产业化应用的核心技术难点,就在于当负极添加的硅系活性材料较多时,通常会因为约束性不够导致体积膨胀、碳层开裂,不足以形成稳定的固体电解质膜,使得电池经过超200次放电后性能迅速衰减至初始的70%以下。 而广汽这项“一核两壳”工艺,则在一定幅度上针对性的有效处置了这个问题(见下图)。 图4:广汽的“一核两壳”式硅基负极结构,可以有效对抗电池衰减。来源:专利文件 故而,至少从这项技术所测试并显示出的纸面技术指标上,我们可以对广汽“掺杂石墨烯的硅基负极锂电池”保持谨慎乐观。 04 广汽急什么? 本文最后,我们再来推测下,作为一家国企性质的整车公司,广汽为何会如此着急且高调地要在2021年元月,发布一项距离量产仍有较长时间(据官方称最晚将于今年四季度量产)的动力电池技术? 原因很可能来自竞品以及股价的压力: 实际上,上汽联合阿里此前发布得智己品牌汽车,同样号称将可实现1000公里NEDC续航。根据推测,该汽车电池涉及的技术路线同样是“硅基负极锂电池”。 广汽此番发声,很像是一种“主权示威”——我们的技术是基于自主研发的核心专利,竞品们或只能依赖宁德时代这样的电池厂商(当然,广汽的电池配套厂也是和宁德时代联合成立运营的)。 图5:广汽已联手宁德时代生产电池。来源:网络。 另外,作为中国老牌整车公司,过去一年多,新势力们各种“PPT技术”引发的股价狂飙,可能也为广汽提供了“参考样板”,既往通过对于技术的宣示,提振股价、做大市值——这本身也是一种政治正确与需求。 依据常识来说,相比于新势力们的造势,体制本身也决定了广汽集团不会也不敢完全脱离实际地向外界制造噱头。所以对于广汽此番的高调,我们相信背后还是有充分的现实准备的——而这,某种意义上也是我们对其“掺杂石墨烯的硅基负极锂电池”保持谨慎乐观的理由之一。 只不过无论如何,通过以上的揭示,我们可以基本确认广汽上周五对外发布的文案中关于“石墨烯电池”的说法确实是较为不准确的,存在误导市场之嫌。这也很大程度反映出当前电动车市场领域“虚火过剩”,很值得投资者警惕。 最后特别指出,本文涉及技术方面内容较多,难免谬误与疏漏。不足之处,敬请各位文后留言指出与讨论。