《Nature,10月16日,Rabies virus-based COVID-19 vaccine CORAVAX? induces high levels of neutralizing antibodies against SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-11-16
  • Rabies virus-based COVID-19 vaccine CORAVAX™ induces high levels of neutralizing antibodies against SARS-CoV-2
    Drishya Kurup, Christoph Wirblich, Holly Ramage & Matthias J. Schnell
    npj Vaccines volume 5, Article number: 98 (2020)

    Abstract
    The recently emerged coronavirus SARS-CoV-2, the causative agent of COVID-19, is rapidly spreading in the world. The exponentially expanding threat of SARS-CoV-2 to global health highlights the urgent need for a vaccine. Herein we show the rapid development of a novel, highly efficient, and safe COVID-19 vaccine using a rabies virus-based vector that has proven to be an efficient vaccine against several emerging infectious diseases. This study reports that both a live and an inactivated rabies virus containing the SARS-CoV-2 spike S1 protein induces potent virus-neutralizing antibodies at much higher levels than seen in the sera of convalescent patients. In summary, the results provided here warrant further development of this safe and established vaccine platform against COVID-19.

  • 原文来源:https://www.nature.com/articles/s41541-020-00248-6
相关报告
  • 《Nature,11月27日,RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-12-22
    • RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response Zezhong Liu, Wei Xu, Shuai Xia, Chenjian Gu, Xinling Wang, Qian Wang, Jie Zhou, Yanling Wu, Xia Cai, Di Qu, Tianlei Ying, Youhua Xie, Lu Lu, Zhenghong Yuan & Shibo Jiang Signal Transduction and Targeted Therapy volume 5, Article number: 282 (2020) Abstract The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to angiotensin-converting enzyme 2 (ACE2) receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.
  • 《Nature,7月15日,Potently neutralizing and protective human antibodies against SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-07-28
    • Potently neutralizing and protective human antibodies against SARS-CoV-2 Seth J. Zost, Pavlo Gilchuk, […]James E. Crowe Jr Nature (2020) Abstract The COVID-19 pandemic is a major threat to global health1 for which there are limited medical countermeasures2,3. Moreover, we currently lack a thorough understanding of mechanisms of humoral immunity4. From a larger panel of human monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein5, we identified several that exhibited potent neutralizing activity and fully blocked the receptor-binding domain of S (SRBD) from interacting with human ACE2 (hACE2). Competition-binding, structural, and functional studies allowed clustering of the mAbs into classes recognizing distinct epitopes on the SRBD as well as distinct conformational states of the S trimer. Potent neutralizing mAbs recognizing non-overlapping sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two mouse models of SARS-CoV-2 infection, passive transfer of either COV2-2196 or COV2-2130 alone or a combination of both mAbs protected mice from weight loss and reduced viral burden and inflammation in the lung. In addition, passive transfer of each of two of the most potently ACE2 blocking mAbs (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutics.