2024年6月27日,加州大学伯克利分校Andrew Dillin通讯在Cell发表题为The extracellular matrix integrates mitochondrial homeostasis的文章,揭示了ECM在整合线粒体稳态中重视的作用,揭示了ECM的变化如何影响线粒体功能,从而影响生理状态。
这项研究首先证明,ECM的改变,特别是透明质酸(HA)的降解,可以诱导人类细胞的线粒体重塑。这种重塑的特征是线粒体分裂、氧化应激增加和线粒体呼吸速率下降。这些变化在进化上是保守的,因为作者在秀丽隐杆线虫中观察到了对ECM重塑的类似影响。研究人员继续确定TGF-β信号通路是ECM和线粒体之间沟通的关键介质。他们表明,TGF-β受体对于将信号从ECM传递到线粒体至关重要,从而导致线粒体分裂和功能变化。这一发现尤其重要,因为它表明ECM可以起到“警报成分”的作用,释放储存的配体,如TGF-β,以启动对病原体或机械应力的保护反应。
进一步的研究表明,TMEM2,一种参与HA降解的跨膜蛋白,通过TGF-β-SMAD信号通路调节线粒体稳态。该途径在不同物种中高度保守,突出了其在协调线粒体对ECM变化的反应中的基本作用。该研究还表明,TMEM2诱导的TGF-β信号传导直接诱导线粒体分裂,在ECM重塑和线粒体功能之间提供了机制联系。这项研究还揭示了TMEM2通过线粒体应激信号促进免疫的新作用。作者证明,TMEM2诱导的ECM重塑增强了线粒体应激反应,进而激活了对病原体的免疫防御。这一发现为ECM如何有助于宿主防御机制提供了一个新的视角,可能是通过改变线粒体的形式和功能来更好地对抗入侵的微生物。
总的来说,这些发现展示了ECM如何作为外部环境和线粒体功能之间的动态界面。这项研究不仅促进了我们对线粒体稳态的理解,还强调了ECM在协调细胞对环境挑战的反应中的重要性。将TGF-β-SMAD途径确定为该过程中的核心角色,为探索靶向该途径在以ECM重塑为特征的各种疾病(如类风湿性关节炎、癌症和炎症)中的治疗潜力开辟了新的途径。