《SSRN,2月27日,Artificial Intelligence Application in COVID-19 Diagnosis and Prediction》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-28
  • Artificial Intelligence Application in COVID-19 Diagnosis and Prediction

    16 Pages Posted: 27 Feb 2020

    Minfei Peng

    Wenzhou Medical University - Affiliated Taizhou Hospital

    Jie Yang

    University of Macau - Department of Computer and Information Science

    Abstract

    Background: On December 8, 2019, the first new coronavirus case was discovered in Wuhan, China, and an intensive outbreak incepted in the next month (about January 20). Virologicalists and epidemiologists predict that it will reach a peak in about 90 days and fade away till the end in about 4 months (Early April), the entire epidemic will terminate in early May. The daily rise in confirmed cases and the increase in the number of outbreak communities on the epidemic map always hit the nerves of panic. On January 31, 2020, the World Health Organization (WHO) declared China ’s new coronavirus epidemic an “public health emergency of international concern” (PHEIC). At this time, citizens from multiple nations including China express their grave concerns on the diagnosis, prediction and heal of the virus contagion.

  • 原文来源:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3541119
相关报告
  • 《2月27日_人工智能在COVID-19诊断与预测中的应用》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-03-01
    • 2月27日_人工智能在COVID-19诊断与预测中的应用 1.时间:2020年2月27日 2.机构或团队:温州医科大学;澳门大学 3.事件概要: 《柳叶刀》预印版于2月27日发表了温州医科大学等的文章“Artificial Intelligence Application in COVID-19 Diagnosis and Prediction”。 文章通过运用人工智能(AI)分析COVID-19通用诊断指标,以提高临床诊断的准确性。文章收集了自2020年1月17日至2020年2月1日,在浙江省泰州市人民医院泰州市公共卫生科就诊的32例COVID-19确诊患者和85例疑似患者(其中确诊的阳性患者时通过实时RT-PCR诊断)数据。同时,直至2020年2月2日,文章收集了同期的COVID-19核酸阴性患者数据85例。在放射学特征和实验室数据(第一组结果)中进行分析,采用四种人工智能技术筛选COVID-19诊断的重要指标。文章采用了一些经典的和最先进的属性约简和特征选择方法,包括:稀疏的新线性平方回归(SRLSR),进化非主导的径向槽基础算法,属性约简与多目标分解合奏优化器(ARMED),梯度增加特征选择(GFS),递归特性消除(RFE)。 文章中采用四种AI技术筛选所有患者,最终得到18项与COVID-19诊断显著相关的指标,其中最重要的属性为白细胞、嗜酸性粒细胞计数、嗜酸性粒细胞率、2019年新型冠状病毒RNA (2019n-CoV)和类淀粉蛋白-A,同时与2019年中国病毒诊断临床指南相匹配。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3541119
  • 《Nature,5月19日,Artificial intelligence–enabled rapid diagnosis of patients with COVID-19》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-20
    • Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 Xueyan Mei, Hao-Chih Lee, […]Yang Yang Nature Medicine (2020) Abstract For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT–PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT–PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT–PCR assay and next-generation sequencing RT–PCR, 419 (46.3%) tested positive for SARS-CoV-2.