《日本计划在月球上开展固态电池实验》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-02-26
  • 想要在太空中使用固态电池,听起来不像是什么新鲜事。但问题在于,这项技术在地球上,也尚未普及。尽管如此,还是有不少初创企业,希望尽快在月球上开展电池实验。之所以如此积极,是因为它看到了未来月球探索的光明前景。诸如ispace等私营或国有机构,都在竞相将机器人和实验仪器送往月球。但在抵达这颗卫星之后,需要考虑长时间没有太阳照射的后备能源方案。

    有太阳和没太阳,月球上会经历极端的温差。想要找到一种足够承受这种温度波动,但仍能有效储存能量的电池,对月球探索有着重大的意义。

    固态电池,或许是一种很有前途的解决方案。与普通电池相比,其采用了固态电解质,你可以将它简单认作传统锂离子电池的超级版本。

    为了帮助带电粒子从电池的两极之间移动,锂离子需要依赖于一种易燃的液体作为电解质。遗憾的是,即便在地球上,这种液体也会造成一些问题。

    在高温下,电解质可能导致电池失效起火、甚至让手机等设备爆炸。在低温环境下,电解液会被冻成固体,导致电池大幅衰减。

    作为对比,固态电池中的电解质,经过了特别精心的设计。尽管没有使用液体来包裹,这种固态材料仍能帮助离子来回移动。

    瑞士联邦材料科学与技术实验室固态电池研究员、博士生FrancescoPagani表示:

    固态电池无需液体来包裹一切,而是将不同的部分堆叠成固体层,且能够让电池变得更加紧凑与传统锂离子电池相比,固态电池能够保存更多的能量、充电速度也更快。

    理论上,它能够更好地经受月球的剧烈温差,从阳光照射下的260ㄈ(127℃)、到阴影下的-280ㄈ(-173℃)。就算过热,也不会轻易燃烧或爆炸。

    虽然在极端的低温下,固态电池的充电速度会变慢,但至少它可以在太空环境下存活。如果换成锂离子电池,根本就没有考虑的必要。

    据悉,规划中的月球固态电池,将由日本的NGKSparkPlug制造。虽未确定这种固态电池的确切规格,但已知其将使用陶瓷材质的电解质(特点是相当稳定,因此极受欢迎)。

    目前其计划做一些相当基本的测试,以验证电池是否能够在月球的真空环境中存活和保持电荷,其希望这项实验能够拓展太空电池的可行性。

相关报告
  • 《GS汤浅开发新型硅电极制造固态电池》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-11-21
    • 日本电池制造商GS汤浅正在提升其在动力电池领域的竞争实力。 外媒报道称,GS汤浅开发了一种硅金属电极,这种可以带来更高的能量密度和更长的使用寿命。与现有的锂电池相比,其能量密度可以增加两倍。 GS汤浅表示,这种极具前途的硅金属电极可以用于开发固态电池,为电动汽车提供三倍能源。现在需要进一步改善该材料的循环稳定性,计划在2025年在电动汽车电池中大规模使用硅金属电极。 金属硅拥有4200 mAh/g的理论容量,比锂离子电池高数倍。但由于硅金属在充电和放电过程中会发生相当大的体积膨胀,因此尚未大规模导入使用。 GS汤浅宣布,它已经提高了金属硅电极电池的库仑效率和循环性能, 主要方法是找到硅金属的最佳粒径和电极结构,以及使用多种不同的导电添加剂。 这改善了硅金属电极的电极可成形性,并且还显示出电极电导率的提高产生更好的放电性能。 此前,GS汤浅宣布与博世合作开发新型电池技术,研发出两倍于锂离子电池的能量密度且成本降低一半的新型电池,目标是在2020年投入市场。但由于博世在2018年宣布不会生产电芯,这使得该合作项目没有持续下去。 不过,GS汤浅的新型电池技术项目在日本找到了新的合作伙伴。 2018年,GS汤浅与丰田、松下、日产、本田等企业成立了一个产业联盟,在日本政府的帮助下开展下一代固态电池项目的开发研究,共同推进固态电池的产业化。 2019年夏天,丰田宣布将在2020年东京奥运会上亮相旗下的固态电池电动汽车,而GS汤浅正是丰田该项目的合作伙伴之一。 除了研发新型电池之外,GS汤浅也在扩充其动力电池产能,并将目光从亚洲转向欧洲市场。 日前, GS汤浅在欧洲大陆的第一家电池工厂正式竣工,即将进入生产阶段,向其欧洲汽车合作伙伴的混合动力和电动汽车供应锂离子电池。 该工厂是GS汤浅于2018年投资2900万欧元(约合人民币2.26亿元)在匈牙利米什科尔茨建造其第一家欧洲电池工厂,将有51名员工开始生产。该项目还获得了匈牙利政府4.65亿匈牙利福林(约合人民币1106万元)的资金补助。
  • 《国外21家企业的固态电池技术路线》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-12
    • 固态电解质体系包括硫化物、卤化物、氧化物、聚合物等,每一种体系各有优势。目前要在全固态锂电池中得到应用的话,还没有一种材料能够满足所有性能的要求。全球各国企业分别采用什么技术路线呢? 日本 丰田汽车公司,技术路线:硫化物   丰田汽车在硫化物全固态电池技术上的专利数量已超过1000件,位居全球第一。尽管丰田在新技术推进上较为谨慎,但公司已经宣布了在2027或2028年实现全固态电池技术的商业化,向市场投放配备该技术的纯电动汽车。丰田的这一目标显示了其在电动化转型上的决心,尽管面临量产难度、电池配方、制造工艺和生产成本等诸多挑战。   本田技研工业股份有限公司,技术路线:硫化物   根据目前的信息,本田技研工业股份有限公司也在探索固态电池技术,并且硫化物固态电解质是其中的一个关注点。   三菱化学集团/日产汽车公司联盟,技术路线:硫化物   三菱化学集团和日产汽车公司在固态电池技术路线上选择了硫化物作为研究方向。日产汽车公司已经公布了叠层软包全固态电池(ASSB)电芯的试点生产设施,并计划于2028年正式投产。该公司计划通过不断的创新,将电池成本降至每千瓦时65美元,以实现电动车型和燃油车型的成本平价。此外,日产汽车正在与美国宇航局(NASA)合作开发新型全固态电池,目标是2028年实现产品发布和试点工厂采用的电池。   松下电器公司,技术路线:卤化物   2018年,松下报道的氯化物电解质因其高离子电导率和与高电压正极材料相兼容的特点而受到关注。最近,松下公司Yoshiaki Tanaka团队又报道了一种全新的具有高离子电导率的混合阴离子固态电解质LiNbOCl4以及LiTaOCl4,这些氧卤化物继承了卤化物的氧化稳定性和形变性,并且在室温下具有超过或相当于锂离子电池中使用的有机液态电解质的离子电导率。   富士电气化学有限公司,技术路线:氧化物   富士电气化学有限公司在固态电池技术路线上选择了氧化物作为其主要研究方向。   小原股份有限公司,技术路线:氧化物   小原股份有限公司在固态电池技术路线上选择了氧化物作为研究方向。   日立造船公司,技术路线:硫化物   日立造船已开发出全固态电池“AS-LiB”,这款电池采用硫化物固态电解质,其产品容量涵盖从55mAh到5000mAh不同规格,能在极端温度下稳定工作,且已通过针刺实验,证明其安全性。日立造船的“AS-LiB”电池已于2019财年实现批量生产,并已经应用在航空航天领域,其产品在2019年实现了在太空中的首次充放电。此外,在2024年2月,日立造船还从芯片设备商接获了首个全固态电池订单。   三洋化成工业股份有限公司,技术路线:聚合物   三洋化成工业股份有限公司在固态电池技术路线上选择了聚合物作为其主要研究方向。   日本出光兴产股份有限公司,技术路线:硫化物   出光兴产在硫化物固态电解质方面的专利数量居世界前列,并且已经小规模生产固态电解质,预计在2027年正式量产。出光兴产正在通过改善工业和规模经济来降低硫化锂等原材料的价格,从而降低固态电解质的成本。此外,出光兴产还与优美科合作,共同开发用于固态电池的高性能正极材料,结合双方在正极活性材料和固态电解质方面的专业知识,以期为电动汽车发展提供技术突破。 德国   宝马集团,技术路线:硫化物   宝马集团在全固态电池技术路线上选择了与美国初创公司Solid Power合作,共同研发基于硫化物的全固态电池。宝马集团计划在2025年之前推出第一辆基于Solid Power电池技术的原型车,并在2030年之前实现全固态电池的量产。为了实现这一目标,宝马已经获得了Solid Power的技术许可,并在其位于慕尼黑附近帕斯多夫的电池制造能力中心建立一条全固态电池的原型生产线。   大众集团,技术路线:氧化物   大众集团投资的QuantumScape公司专注于氧化物固态电解质的研发,QuantumScape的固态电池A样品在实验室测试中表现出色,经过1000多次的充电循环后,电池容量保持率仍高达95%以上,且在电池的全生命周期内,电动汽车可行驶超过50万公里而无明显续航能力衰退。 韩国   LG新能源公司,技术路线:聚合物/硫化物   根据LG新能源的副总裁孙权男在2023世界动力电池大会上的演讲,公司正持续投入研发基于液态电解质的锂硫电池和锂金属电池,并开发高度稳定的不含液态电解质的全固态电池,以克服当前锂离子电池的安全性难题。此外,LG新能源亚洲区营销总经理朴镇庸在中国汽车论坛上透露,公司正在开发的新一代电池中包括具有更优安全性能的聚合物和硫化物的全固态电池,并计划于2026年实现量产,有望应用于电动汽车和飞机领域。   现代汽车集团,技术路线:聚合物/硫化物   现代汽车较早开始研发固态电池技术,并在2017年宣布了这一计划。此外,现代汽车还曾投资美国Ionic Materials公司,这是一家在聚合物固态电池技术领域起步较早的企业。现代汽车计划在2025年左右实现配备固态电池的电动车试生产,并在2030年前后实现全面批量生产。   SK On公司,技术路线:硫化物/氧化物   SK On公司成功研发了具有全球高锂离子电导率的氧化物固态电解质,通过调整LLZO(由锂、镧、锆、氧构成)的添加剂,新材料的锂离子电导率提升了70%。此外,SK On也在开发聚合物-氧化物复合材料和硫化物基电池两种类型的全固态电池,目标是在2025年和2026年分别生产试验原型,并在2028年和2029年实现商业化。   三星SDI公司,技术路线:聚合物/硫化物   三星SDI的全固态电池(ASB)技术结合了NCA高镍技术、高性能硫化物固态电解质等技术,目标是实现优异的性能表现。公司计划在2027年实现全固态电池的量产,这种电池的能量密度高达900Wh/L,比现有产品提高了40%,并且具有快速充电的能力,9分钟即可从8%充至80%电量。三星SDI的全固态电池研发以硫化物为电解质,目前已获得相关专利并进入技术验证阶段。公司已经建立了全固态电池试产线。此外,三星SDI也在开发基于聚合物电解质的固态电池,通过与德克萨斯大学研究团队的合作,成功开发了一种新型聚合物电解质——“SIPE(单离子导电聚合物电解质)”,该电解质在室温下的离子电导率提高了约十倍。 法国   博洛雷集团,技术路线:聚合物   作为聚合物固态电池领域的先驱,博洛雷集团在2011年就推出了搭载该技术的产品。其电动汽车Bluecar和电动巴士Bluebus使用的是BatScap生产的30kWh金属锂聚合物固态电池,该电池的能量密度为100瓦时/千克,工作温度在60至80摄氏度之间。 英国   Ilika公司,技术路线:氧化物   在技术路线选择上,Ilika公司认为氧化物固态电池在化学稳定性方面具有优势,Ilika公司通过将电解质做得非常薄来弥补氧化物电导率较低的缺点,并采用丝网印刷技术来生产全固态电池。Ilika公司的全固态电池正极材料采用与三元相同的材料,能量密度可达到300Wh/kg至350Wh/kg,并计划通过采用811正极材料进一步提高能量密度,目标是达到480Wh/kg,并最终在2025年达到550Wh/kg。负极材料方面,Ilika公司不使用锂,而是采用硅碳组合,以避免锂的高活性带来的问题。 美国   Quantum Scape公司,技术路线:氧化物   Quantum Scape公司在固态电池领域的技术路线主要采用的是氧化物固态电解质,尤其是LLZO(锂镧锆氧)石榴石型氧化物作为其固态电解质的主要成分。Quantum Scape的固态电池技术还包括使用无锂负极设计,即取消负极活性材料,采用铜箔集流体作为负极,以及一种陶瓷(氧化物)与正极有机凝胶电解质的结合作为隔膜材料。这种设计使得电池的能量密度可达380-500Wh/kg,且能在45°C下15分钟内充至80%的电量。   Ionic Materials公司,技术路线:聚合物   Ionic Materials公司采用的固态电池技术基于其获得专利的固体聚合物材料,这种材料使得固态电池具有一系列显著的优点,包括固有的安全性、经济性、高能量密度以及在室温下的使用能力。此外,Ionic Materials的聚合物电解质已被证实与多种化学品兼容,理论上这些化学品比当前最先进电池中使用的活性材料具有更高的性能极限。   Solid Power公司,技术路线:硫化物   Solid Power公司选择的技术路线是基于硫化物的全固态电池(ASSB)。公司已经成功开发出了第一代全固态电池,其能量密度达到了320Wh/kg,并计划在未来几年内实现商业化生产和应用。2022年,Solid Power完成了20安时(Ah)的全固态电池的生产,并计划试生产100安时的大容量固态电池产品。此外,Solid Power还向宝马汽车交付了首批固态电池A样品。   Factorial Energy公司,技术路线:聚合物   Factorial Energy公司是一家专注于聚合物固态电池技术的初创企业。该公司的固态电池技术使用了一种专有的固体电解质材料,称为“Factorial电解质系统技术”(FEST),这种技术能够提高电池的安全性和能量密度。Factorial Energy的固态电池技术具有显著的优势,比如能够在不牺牲电池组寿命的情况下提高20-50%的续航里程。此外,该公司的电池在容量低于80%之前可以进行多达460次充放电循环。