《科学家解析不同生物反应器流体动力学机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-03-16
  • 生物反应器被广泛用于生物制药和再生医学行业。药物研发依赖于绕着轨道型直径摇晃的小型多孔板,而用于大规模生产的生物反应器通过搅拌产生晃动。这些不同的方法产生了不同的流体动力学,致使实验室成果升级到工业规模非常困难。

    一个由英国伦敦大学学院研究人员组成的团队,通过将针对搅拌式生物反应器的分析技术应用于轨道摇晃生物反应器(OSB)的流体动力学分析,为两者架起了桥梁。通过粒子图像测速将垂直和水平方向的测量结果结合起来,该团队重建了OSB流动的三维模型,并且明确了OSB内拟序结构的关键特征。他们日前在美国物理联合会(AIP)出版集团所属《流体物理学》杂志上报告了这一成果。

    “在最新研究中,我们利用了两种不同的分解技术。这使得我们辨别出反应器内流体振荡的主导模式。”论文作者之一Andrea Ducci介绍说,“第一对模式控制自由表面的移动以及细胞的通气,第二对模式则同罐体的集流传输相关。”

    摇晃的生物反应器提供了较低的剪切应力以及氧传递的完整自由表面。氧传递是一种柔和的涡流,对于培养哺乳动物细胞至关重要。本征正交分解(POD)依据能量分出模式等级,而动态模式分解(DMD)根据频率对其进行排列。Ducci介绍说,其团队首次利用这些技术分析了OSB。

    研究人员利用有限时间李雅普诺夫指数(FTLE)分析评估了反应器分散营养物的效果。同时,该团队测量了OSB中流体的两个不同弗劳德数(Fr)。Fr是无量纲量,将流动惯性和重力关联起来并且被用于预测生物反应器内流体何时与其轨道同相或者脱节。

  • 原文来源:http://news.bioon.com/article/6719117.html
相关报告
  • 《中试规模流化床反应器生物质气化过程中流体动力学行为的二维和三维对比分析》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2018-08-02
    • 进行了二维和三维模拟,以预测中试规模沸腾流化床反应器整个气化过程的行为。对流化床内复杂的流体力学现象进行了特别关注。通过与实验气化运行和从中试流化床收集的流化曲线对比,验证了实现的多相欧拉-欧拉数学模型。通过对网格敏感性的研究,得到了合适的二维和三维计算域。对两种构型的流化床内固体分布、混合分离现象和二元混合传热进行了比较研究。三维仿真结果表明,实验结果提高了预测性能。此外,三维模拟显示了更好的偏析程度,而二维模拟显示了更好的混合指数,同时也有低估反应堆传热行为的倾向。主要发现表明,无论何时考虑定量值时,二维和三维模拟的固体分布都与某些近似一致,而在绝对条件下,则会出现较大的差异。二维构型在很大程度上错误地反映了较高的表面气体速度。研究还发现,较高的表面气速会引起两种构型的较大差异。最后,这两种构型都成功地描述了一般趋势,然而,二维模拟在每次精度要求不高时都是合适的,而三维模拟应该考虑到准确的预测。 ——文章发布于2019年2月
  • 《科学家提出流体界面接触角迟滞转变的新机制》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2024-02-02
    • “如何在微观层面测量界面现象”被列入世界前沿125个科学问题名单。长期以来,研究者不断发展新的理论和实验手段来研究界面问题,试图揭示界面上复杂现象的物理本质以及微观层面的分子行为与宏观现象间的关联机制。近日,中国科学院力学研究所微纳米流体力学研究团队,利用独特设计的长针式原子力显微镜(Long-needle AFM),建立了能够在气液固三相界面上的精确操控和小尺度力学测量的实验平台,实现了离子液体在金属壁面离子排布和接触角迟滞的测量和调制。相关研究成果以“Manipulation of Contact Angle Hysteresis at Electrified Ionic Liquid-Solid Interfaces”为题发表在《物理评论快报》(Physical Review Letters)上。 离子液体是一种完全由阴、阳离子构成的电解液,拥有较大的离子尺寸以及较强的离子间相互作用。其独特的物理、和化学性质,使得离子液体在摩擦、催化和储能等领域引起了广泛的关注。它一方面呈现流体的物质状态,另一方面在分子之间强库伦相互作用下呈现出熔盐的特质,这些独特的性质使得它的界面现象很难被传统流体或稀电解质理论所解释。它也是一种潜在的“活性”流体,界面行为受到表面能量和受限效应的调控。利用该特性,研究团队通过电场调控离子在AFM长针壁面上的排布,促使微观异质性增强,引起表面无序化和接触线钉扎效应,造成宏观接触角迟滞的增大,提供了由宏观毛细力表征微观界面离子排布的可行路径。 AFM常用于在空气或真空中测量固体表面形貌和样品与探针之间的相互作用力。但在液体环境中探针上的阻尼过大,限制了其在流体力学和生物交叉研究中的应用。研究团队通过在AFM悬臂梁尖端组装精密可控的微米级长针,实验中只需将长针尖端探入液体,从而大大减小了悬臂梁上的阻尼。通过对长针表面修饰,可以实现具有不同物性特征的功能表面。当长针置于气-液界面时,流体界面会立即在固体表面形成毛细爬升。AFM可以直接测量作用在三相界面上的毛细力,以及探针垂直方向运动中力的动态变化,从而实现对流体界面的动力学和材料在液体环境中微纳尺度力学性质的直接测量。长针式AFM 力学分辨率可达0.01 纳牛,接触角分辨率为0.01o,时间分辨率为0.05 毫秒,具有极高的力学测量精度和可操控性,为进一步研究三相接触线等界面现象、微观分子与宏观力学耦合、原子制造与检测等力学交叉前沿提供了可行的工具。例如研究者与香港科技大学、国立中央大学合作,应用该技术研究了移动接触线的雪崩现象及其统计规律以“Avalanches and Extreme Value Statistics of a Mesoscale Moving Contact Line”为题背靠背发表在《物理评论快报》上。 力学所博士生聂鹏程为论文第一作者,蒋玺恺副研究员为共同第一作者,郑旭副研究员为合著者,关东石研究员为通讯作者。该研究得到了国家自然科学基金委、中国科学院、以及基金委基础科学中心项目“非线性力学的多尺度问题”的资助。(来源:中国科学院力学研究所)