《Fabric-Based Integrated Energy Devices for Wearable Activity Monitors》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Abstract
    image

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201402439/abstract
相关报告
  • 《Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract image A novel and scalable self-charging power textile is realized by combining yarn supercapacitors and fabric triboelectric nanogenerators as energy-harvesting devices.
  • 《Flexible Energy-Storage Devices: Design Consideration and Recent Progress》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.