《Science | 人脑中单细胞染色质可及性的比较图谱》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-10-14
  • 2023年10月13日,加利福尼亚大学等机构的研究人员在Science 上发表了题为A comparative atlas of single-cell chromatin accessibility in the human brain的文章。

    单细胞转录组学的最新进展揭示了人类大脑中不同的神经元和胶质细胞类型。然而,调控细胞身份和功能的调控程序仍不清楚。该研究利用测序技术(snATAC-seq)对转座酶可接近的染色质进行了单核分析,研究了来自3名成年人的42个大脑区域的110万个细胞的开放染色质景观。

    整合这些数据揭示了107种不同的细胞类型及其对人类基因组中544,735个候选顺式调控DNA元件(cCREs)的特异性利用。近三分之一的cCREs在小鼠脑细胞中表现出保守性和染色质可及性。该研究揭示了特定脑细胞类型与神经精神疾病(包括精神分裂症、双相情感障碍、阿尔茨海默病(AD)和重度抑郁症)之间的密切联系,并开发了深度学习模型来预测非编码风险变异在这些疾病中的调节作用。

    本文内容转载自“ CNS推送BioMed”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/IwI13twn10xlGUJsNbQekg

  • 原文来源:https://www.science.org/doi/full/10.1126/science.adf7044
相关报告
  • 《Nature | 水稻单细胞多组学图谱》

    • 来源专题:战略生物资源
    • 编译者:朱晓琳
    • 发布时间:2025-07-14
    • 发表机构:中国农业科学院生物技术研究所 作    者:谷晓峰,梁哲(通讯作者)     水稻作为全球重要粮食作物,提升单产是育种核心目标。我国水稻单产虽高于全球平均水平,但仅为全球最高单产国家的60%左右,且近年增长放缓。传统育种手段已难以满足需求,亟需借助新兴测序技术挖掘产量相关关键基因,而单细胞测序技术以高通量和高分辨率优势,为探究单细胞分子机制提供新途径,但植物领域尚未开展全面的单细胞多组学研究。     长期以来,科研人员通过全基因组、群体遗传等手段挖掘了水稻重要性状调控基因,但对基因在特定细胞类型中的作用及单细胞水平参与组织发育的机制缺乏系统认识。水稻产量与品质依赖根、茎、叶、种子等器官的发育功能,解析单细胞水平的基因调控模式成为突破瓶颈的关键。     研究团队利用10x Genomics单细胞多组学平台,在水稻中首次实现单一细胞水平同步刻画基因表达与染色质调控状态。通过对根、茎、幼叶、旗叶、茎尖、分蘖芽、幼穗和种子8个主要器官的研究,获取超11万个细胞的RNA表达与染色质可及性数据,结合大量原位杂交试验验证,鉴定出54个细胞类型,全面解析了水稻组织层面的功能细胞组成,构建起全球首个水稻多器官单细胞多组学数据库。     该研究开发了水稻细胞命运扰动模拟算法,基于CellOracle算法在不同细胞类型中进行虚拟敲除,预测基因扰动后的细胞轨迹变化。例如模拟RSR1基因敲除,成功预测皮层细胞命运改变并经实验验证,为无需基因编辑分析基因功能提供了智能预测手段。     在转录调控研究方面,团队建立了染色质可及性区域DNA序列motif富集度与转录因子表达趋势相结合的预测流程,系统区分不同细胞类型中转录因子的激活或抑制类型,大规模识别出 250余个关键转录因子调控模式,如ARF8的激活型预测与已有报道高度一致,显著提升了转录调控研究的效率与准确性。     通过单细胞转录组数据的共表达网络分析,研究将水稻基因划分为9个功能模块,其中M2模块与光合作用相关、M4模块参与氮代谢,各模块在不同细胞类型中的富集差异为解析代谢调控网络提供了新思路。     研究进一步整合群体GWAS结果,建立“基因 - 细胞类型 - 性状”三维关联图,发现分蘖数与分蘖芽细胞、粒重与种胚细胞、抗病性与叶表皮细胞等核心性状的精准对应关系。该研究构建的智能预测和设计技术,实现了从单细胞到性状设计的精准对接,为作物智能育种提供了单细胞水平预测设计的新范式,推动水稻高产育种进入精准分子设计新阶段。 发表日期:2025-07-09
  • 《Nature | 在单细胞中将基因型映射到染色质可及性中》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-05-10
    • 2024年5月8日,纽约基因组中心等机构的研究人员在Nature上发表了一篇题为Mapping genotypes to chromatin accessibility profiles in single cells的文章。 在体细胞组织分化中,染色质可及性变化控制着启动和前体细胞对细胞命运的承诺。因此,体细胞突变可能会改变染色质可及性模式,因为它们破坏了分化拓扑结构,导致异常的克隆性生长。然而,由于突变型和野生型细胞混合存在,定义体细胞突变对人类样本表观基因组的影响具有挑战性。 为了绘制体细胞突变如何在人类克隆性生长中破坏表观遗传景观,研究人员开发了一种名为单细胞染色质可及性靶向位点基因分型(GoT–ChA)的技术。这个高通量平台将基因型与单细胞分辨率下的染色质可及性联系起来,能够在单一检测中对成千上万的细胞进行分析。研究人员将GoT–ChA应用于患有JAK2V617F突变造血组织的骨髓增生性肿瘤患者的CD34+细胞。野生型和JAK2V617F突变前体细胞之间的差异可及性分析揭示了突变造血前体细胞内部以及细胞状态特异性的转变,包括造血干细胞中的细胞内在促炎特征,以及巨核细胞前体中独特的促纤维化炎症染色质景观。通过整合线粒体基因组分析和细胞表面蛋白表达测量,研究人员能够通过推测将基因分型扩展到DOGMA-seq上,实现单细胞中基因型、染色质可及性、RNA表达和细胞表面蛋白表达的捕获。 总的来说,该研究展示了JAK2V617F突变以细胞内在和细胞类型特异性的方式导致表观遗传重连线,影响炎症状态和分化轨迹。研究人员预期GoT–ChA将推动未来对恶性和非恶性背景下克隆人群中体细胞突变与表观遗传改变之间关键联系的广泛研究。