《探索 | 光生物学调节干预并改善工作记忆》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-12-12
  • 光生物学调节,也被称为低水平激光治疗,多种光从低功率激光器或发光二极管(LED)发出,这种非侵入性的方法可用于对抗疾病、修复损伤、缓解疼痛、管理器官和免疫系统功能障碍、减少炎症以及解决各种神经和年龄相关的健康问题。

    图1 大脑艺术图

    近日,研究人员发现,应用于大脑的经颅光生物调节可以提高人类的工作记忆能力,该结论需要进行更多的研究来验证结果,以及充分了解应对措施的基本机制和持续时间。

    一种特别的激光治疗

    第一个光生物调节实验紧挨着第一个激光器的发明。1967年,匈牙利医生Endre Mester利用红宝石激光照射剃毛的老鼠背部。虽然他希望根除植入皮下的肿瘤,但激光功率太低,不足以产生这样的影响。相反,Mester医生注意到,与对照组相比,接受治疗的老鼠的毛发生长速度更快。

    现如今,虽然光生物学调节还没有发展为某一疾病的标准治疗方法,但已被验证其具有一定的抗炎和缓解疼痛的作用。其他光疗法通常用于加热和切割组织。与它们不同,光生物发调节采用低功耗激光,不会显著升高温度。

    北京师范大学Dongwei Li及其同事希望发展这项技术可以干预并改善认知功能。尤其是,他们想要测试它对工作记忆的影响,工作记忆是一种短期记忆,用于在完成认知任务时暂时存储信息。

    论文作者之一,也是英国伯明翰大学访问博士生Dongwei Li说:“患有多动症(注意缺陷障碍)或其他与注意力有关的疾病的人可以从这种治疗中受益,这种治疗安全、简单、无创伤,没有副作用。”

    图2 在光生物学调节实验中,该团队将1064 nm激光照射在实验对象的右脑前额叶外皮并持续12分钟

    工作记忆的增强

    该团队使用的半导体泵浦固体激光连续输出功率为2271兆瓦,约为皮肤最大允许功率的五分之一。他们将手持光源置于90名年轻人的右脑前额叶外皮上12分钟,然后测试他们的视觉工作记忆能力,而参与者被要求记住线条的方向和颜色块(如图2)。

    结果显示,在1064 nm的经颅光生物调节下,测试分数提高约25%。经颅光生物调节在852nm 或刺激左侧脑前额叶外皮没有观察到提高。脑电图(EEG)数据也与测试表现相关,但其背后的机制尚不清楚。

    论文作者之一、人类大脑健康中心联合主任Ole Jensen:“作为下一步,我们需要弄清楚激光治疗的效果能持续多久,我们还想研究这种刺激如何帮助参与者解决注意力和工作记忆问题。”

相关报告
  • 《电刺激可以改善人们的工作记忆》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-22
    • 在自然神经科学发表的一项开创性研究中,波士顿大学心理学和脑科学助理教授兼博士研究员John Nguyen的Rob Reinhart证明,电刺激可以改善70多岁人的工作记忆,从而提高他们在记忆任务中的表现。与20岁的人无法区分。 Reinhart和Nguyen的研究目标是工作记忆 - 意识存在的心灵的一部分,每当我们做出决定,推理和回忆我们的购物清单时,活跃的部分。莱因哈特解释说,在20世纪30年代末30年代初,工作记忆开始下降,因为大脑的某些区域逐渐变得断开和不协调。当我们到达60和70年代时,这些神经回路已经恶化到足以使我们中的许多人经历明显的认知困难,即使在没有像阿尔茨海默病这样的痴呆症的情况下也是如此。 但是这两个人发现了一些令人难以置信的东西:通过使用电流来无创地刺激失去节奏的大脑区域,我们可以大大提高工作记忆的表现。 在这项由美国国立卫生研究院资助的研究中,他们要求一群20多岁的人和一群60多岁和70多岁的人进行一系列记忆任务,要求他们查看图像,然后,在短暂停顿后,确定第二张图像是否与原始图像略有不同。 在基线时,年轻人在这方面准确得多,明显优于老年人。然而,当老年人通过头皮电极接受25分钟的温和刺激并个性化其个体脑回路时,两组之间的差异消失了。更令人鼓舞的是?记忆增强至少持续到刺激后50分钟时间窗的结束 - 实验结束的时间点。 要理解为什么这种技术如此有效,我们需要看看允许工作内存正常运行的两种机制:耦合和同步。 当不同类型的大脑节律彼此协调时,就会发生耦合,这有助于我们处理和存储工作记忆。缓慢的,低频的节奏 - theta节奏 - 在你的大脑前面跳舞,像管弦乐队的指挥一样。它们回归到更快,更高频率的节奏,称为伽马节律,这些节奏是在处理我们周围世界的大脑区域产生的。 就像一个音乐管弦乐队包含长笛,双簧管,小提琴一样 - 大脑中的伽玛节奏也为电力管弦乐队创造了独特的东西,创造了你的记忆。例如,一个伽玛节奏可能会处理你脑海中持有的物体的颜色,而另一个则捕捉其形状,另一个捕捉其方向,另一个捕捉其声音。 但是当导体与他们的警棍摸索时 - 当theta节奏失去与那些伽马节奏连接的能力来监视它们,保持它们并指导它们时 - 大脑内的旋律开始瓦解,我们的记忆也会失去它们的清晰度。 同时,同步 - 当来自大脑的不同区域的θ节律彼此同步时 - 允许单独的大脑区域彼此通信。这个过程充当记忆的粘合剂,结合个人的感官细节,创造一个连贯的回忆。随着年龄的增长,我们的theta节奏变得不那么同步,我们记忆的结构开始磨损。 Reinhart和Nguyen的工作表明,通过使用电刺激,我们可以重建这些随着年龄增长而倾向于出错的途径,通过恢复大脑内的信息流来提高我们回忆经验的能力。并且不仅仅是老年人能够从这种技术中受益:它也为年轻人带来了希望。 在这项研究中,14名年轻成人参与者在记忆任务方面表现不佳,尽管他们的年龄很大 - 所以他还召回他们来刺激他们的大脑。 莱因哈特说:“我们发现那些在20多岁时更年轻的表现不佳的人也可以从同样的刺激中受益。” “我们可以提高他们的工作记忆力,即使他们不是60或70年代。” 他补充说,耦合和同步存在于一个连续统一体中:“这并不像有些人不会和那些情侣结婚。” 在光谱的一端,具有令人难以置信的记忆的人可能在同步和耦合方面都很出色,而患有阿尔茨海默病的人可能在这两方面都有很大的困难。其他人介于这两个极端之间 - 例如,你可能是一个弱耦合器,但强大的同步器,反之亦然。 莱因哈特强调,当我们使用这种刺激来改变神经交响乐时,我们不只是做一个小调整。 “这与行为有关。现在,[人们]以不同的方式执行任务,他们更好地记住事情,他们感觉更好,他们学得更快。这真是非凡。” 展望未来,他预见到他未来的各种应用工作。 “这为潜在的研究和治疗方案开辟了一条全新的途径,”他说,“我们对此感到非常兴奋。” Reinhart希望通过将其应用于动物模型来研究电刺激对个体脑细胞的影响,并且他对重复刺激剂量如何进一步增强人类大脑回路感到好奇。然而,最重要的是,他希望有一天他的发现能够为世界上数百万患有认知障碍的人带来治疗 - 特别是那些患有阿尔茨海默病的人。 ——文章发布于2019年4月12日
  • 《研究人员探索纳米材料的生物效应》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-19
    • 尽管纳米技术日益普及,但纳米颗粒的风险评估是一个艰巨的过程,给德国联邦风险评估研究所(BfR)带来了相当大的困难。 为了确定更有效的测试技术,一个研究小组,包括来自BfR和亥姆霍兹环境研究中心(UFZ)的科学家,仔细检查了纳米材料的生物影响。研究结果发表在《颗粒和纤维毒理学》杂志上。 纳米材料的应用范围很广,从建筑材料到染料,从医药到电子和化妆品。它们可以在各种不同的应用中找到,但这些材料的性质尚不清楚。 纳米材料的定义完全取决于它们的大小。1到100纳米之间的材料称为纳米材料。 克里斯汀·舒伯特博士,亥姆霍兹环境研究中心分子系统生物学系 为了直观地了解纳米材料的微小尺寸,1纳米仅仅是1毫米的百万分之一。由于纳米材料非常小,它们可以很容易地穿透人体——例如,通过胃肠道、皮肤和肺部,它们可以导致不利的影响。 与传统化学物质类似,纳米材料在工业化生产、使用和商业化之前也应该进行健康危害检测。 每一种纳米材料现在都在单独进行测试。此外,每个纳米材料变体都需要单独的测试,因为即使是最微小的变化——例如表面或尺寸特性——也会影响毒性。 纳米材料的风险评估有时是困难和非常耗时的。待测物质的清单每天都在变长,因为纳米技术正在成为一项具有广泛应用的关键技术。因此,我们迫切需要找到更有效的风险评估的解决方案。 Andrea Haase博士,德国联邦风险评估研究所 但是如何恰当地将纳米材料分类呢?它们的效果有相似之处吗?材料的哪些特性与这些效应有关?在这项新的研究中,BfR和UFZ的研究人员以及行业代表合作回答了这些问题。 舒伯特补充说:“我们关注的是生物效应,并研究了哪些分子和信号通路会受到哪些纳米材料的影响。” 研究人员进行了体外实验,他们将大鼠肺部的上皮细胞暴露在不同类型的纳米材料中,然后观察细胞内的变化。为了完成这项任务,研究人员使用了所谓的多组学技术——他们首先检测各种氨基酸和脂质以及数千种细胞蛋白,并分析细胞内重要的信号通路。 然后,在一种创新的生物信息学分析方法的帮助下,他们评估了大量的数据并得出了一些有趣的结果。 我们能够证明,具有毒性作用的纳米材料最初会引发氧化应激,而在这个过程中,细胞中的某些蛋白质会被上调或下调。在未来,这些关键分子可以作为生物标记物来快速有效地检测和提供纳米材料潜在毒性作用的证据。 克里斯汀·舒伯特博士,亥姆霍兹环境研究中心分子系统生物学系 如果纳米材料具有高水平的毒性,就会导致氧化应激的增加。随后是炎症过程的发展,细胞在特定的时间点后死亡。 “我们现在对纳米材料如何影响细胞有了更好的理解,”Haase补充说。“在生物标志物的帮助下,我们现在可以检测到比以前更低的毒性反应。” 此外,科学家们还发现了细胞代谢变化与纳米材料特性之间的明显联系。 “例如,我们能够证明,表面积大的纳米材料对细胞的影响与表面积小的纳米材料截然不同,”舒伯特补充说。 了解在毒性作用中起主要作用的参数类型将是非常有用的。这意味着纳米材料可以在制造过程中得到改善,例如,通过微小的改变,从而减少有害影响。 舒伯特说:“我们的研究使我们向前迈进了几大步。”“我们第一次广泛地分析了毒性作用背后的生物机制,根据其生物效应将纳米材料分类,并为新的检测方法确定了关键的生物标志物。” BfR的安德里亚·哈斯非常高兴:“研究结果对未来的工作很重要。它们将有助于为纳米材料的有效、可靠的风险评估提供新概念,并为我们确定前进的方向。”