《《自然·材料》:超稳定碳纤维!解决太空探索中的材料问题》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-12-26
  • 面对浩瀚宇宙,从古至今人类都充满了疑问:众多星球中,存在类似地球一样的星球吗?除了人类,还有存在其他灵长类的生物吗?等等一系列问题。当然,美国好莱坞推出的一系列大片来满足了普通人的好奇心!然而,根据联合国人口基金会调查显示,在2016年,全世界人口就已经超过了72亿。预计在未来较长一段时间内,人口数量还会持续增加。迫使人类加快对宇宙的探索,希望可以找到类似地球的星球,从而移居部分人类以缓解地球的压力。其实,生产具有超强和超轻结构的材料技术在很大程度上决定了人类对空间的探索、利用以及星球移居的进展。

    图1、选择具有超稳定空间结构材料所面临的挑战

    在过去的几十年里,科研人员进行了大量的科学研究,以便开发并制造出能够用于航天器中关键尺寸器件的尺寸超稳定结构的材料。并研发出了碳纤维增强的聚合物材料,导致了结构设计具有接近零的热膨胀系数的特点。然而,由于水分的进入和释放而导致的尺寸不稳定仍然是基体的基本脆弱性,限制了该材料的许多应用。

    基于此,英国萨里大学的S. R. P. Silva教授(通讯作者)团队报道了一种机械耦合的多层扩散阻隔增强的碳纤维复合材料(BECFRP),可以显著降低水分的扩散速率,并消除挥发性有机化合物(VOCs)的释放。所制备的BECFRP具有机械完整性和强度,且强度优于CFRP,同时保持不透湿和脱气性。更重要的是,即使在热循环之后,与应力匹配的表面也减少了表面的应力和污染,从而具有更强的附着力和机械完整性。虽然机械集成的壁垒很薄(<1 μm),但是对整体结构的热膨胀系数(CTE)并没有影响。此外,本文还报道了一种专门设计的等离子体增强化学气相沉积(PECVD)系统,利用该系统能够在单次沉积过程中甚至将复杂形状的三维(3D)组件封装起来,而无需要从原材料中看到。同时,也可以选择性地沉积最上层的发射层,以在光学结构周围提供黑体吸收。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=554630
相关报告
  • 《探索 | 量子材料新视角》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-17
    • 近日,科学和技术设施委员会(简称STFC)中心激光装置(简称CLF)首次通过阿尔忒弥斯实验室(简称Artemis)发表论文。该论文表明,Artemis’1 kHz光束线的短光脉冲照射量子材料二硒化钽(1T-TaSe2),实时可视化材料内部电子和离子的运动,为研究其复杂行为提供了新角度。 图1 (a) 1T-TaSe2的CDW相星状晶格重构;(b) 未失真“正常”状态的表面投影布里渊区 (BZ)。红色虚线模拟费米表面,蓝色实线表示通过 TR-ARPES 测量的 BZ 的实验路径;(c) 激光光子能量的 TR-ARPES 实验示意图。 这一发现强调了晶格在驱动和稳定量子材料相变中的作用,使其设计具有独特电子特性的材料,并通过Artemis进一步研究内在动力学行为。 Artemis实验室,位于牛津郡哈维尔校区的,是一家前沿研究机构,致力于研究分子和新材料中电子的超高速运动。它于2021年末开放,对量子材料中电荷密度波(CDW)跃迁的行为产生了重要的见解。 量子材料具有独特的性质,一直是凝聚态物理学研究的热点。 为了理解这些材料中发生的基本相互作用,STFC实验室提供了包括超快激光源、 XUV 光束线和用于分子动力学、凝聚态物理学和成像的终端站。该设备是世界上少数几个能够记录和捕捉飞秒时间运动过程的设备之一。 因此,Artemis实验室的研究结果不仅促进了创新技术的发展,而且扩展了我们对光与物质相互作用中复杂物理现象的基本理解。 以上研究由巴斯大学Enrico Da Como博士牵头,并与米兰理工大学Charles James Sayers博士、意大利CNR-IFN Division of Padova国家研究委员会-光子及纳米技术研究所Ettore Carpene博士合作,最终发表在期刊《Physical Review Letters》。 Charles James Sayers博士是米兰理工大学超快光谱团队的研究员:“使用飞秒级别的超短光脉冲,如Artemis实验室的光脉冲,可以实时观察材料内部电子和离子的运动,从而深入了解多体相互作用。” 此外,Ettore Carpene博士说:“围绕量子材料最重要的科学问题之一是物质相变到有序状态的起源。” STFC中心激光装置、资深科学家Carlotte Sanders博士补充说:“我们非常高兴新实验室的建成、运行并得到有意思的研究成果。而且随着未来四年 HiLUX 升级,用户可以期待更多的新功能。这是一个非常激动人心的时刻。” “我们与巴斯大学、米兰理工大学和CNR-IFN合作非常愉快,期待与更多科学家合作。”
  • 《全球首枚!碳纤维复合材料火箭问世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-28
    • 碳复合材料结构,使Neutron(中子)成为世界上第一个碳复合材料大型运载火箭。 领先的发射和空间系统公司Rocket Lab USA, Inc.透露了有关下一代Neutron(中子)运载火箭的新细节。 借鉴Rocket Lab开发Electron(电子)小型运载火箭的成熟经验——这是自2019年以来每年发射次数第二多的美国火箭,先进的8吨有效载荷级Neutron运载火箭旨在通过为大型卫星星座、深空任务和载人航天提供可靠且具有成本效益的发射服务来改变太空访问。 世界上第一个碳复合材料中型运载火箭: Neutron将是世界上第一枚碳复合材料大型运载火箭。 此前,Rocket Lab 率先将碳复合材料用于轨道火箭的 Electron 火箭,自 2018年以来,该火箭一直为政府和商业小型卫星提供频繁和可靠的太空通道。Neutron 的结构将由一种新的、特殊配方的碳纤维复合材料组成,该材料重量轻、强度高,能够承受发射和重返大气层时的巨大热量和力量,以实现第一级的频繁重返飞行。为了实现快速可制造性,中子的复合材料结构将使用自动纤维铺设(AFP)制造,该系统可以在几分钟内建造数米的碳火箭弹壳。 “Neutron不是常规火箭。它是一种新型运载火箭,具有可靠性、可重用性和降低成本,从一开始就融入了先进的设计。Neutron 结合了过去最好的创新,并将它们与尖端技术和材料相结合,为未来提供火箭,”Rocket Lab 创始人兼首席执行官彼得贝克在活动期间说。“预计未来十年发射的卫星中有 80% 以上是星座,它们具有独特的部署需求,而 Neutron 是第一个专门解决的问题。就像我们对 Electron 所做的那样,我们不是从传统的火箭设计开始,而是专注于客户的需求并从那里开始工作。结果是火箭尺寸适合市场需求,并且可以快速、频繁且经济地发射。” 简化发射和着陆的独特结构: 可重用性是实现频繁和经济发射的关键,因此,从第一天起,再次发射、着陆和升空的能力就已经融入Neutron 设计的各个方面。Neutron 的锥形设计和宽大、坚固的底座,消除了对复杂机构和着陆腿的需求,强调了其可重复使用性——频繁且经济实惠的发射、着陆和升空。该结构目前的设计不需要复杂的发射场基础设施,包括支撑和发射塔,而是安全地站在自己的发射架上以进行升空。在到达太空并部署 Neutron 的第二级后,第一级将通过在发射场的推进着陆返回地球,从而消除与海基着陆平台和操作相关的高成本。 为可靠性和重复使用而制造的火箭发动机: Neutron 也将由新的火箭发动机阿基米德提供动力。阿基米德由 Rocket Lab 内部设计和制造,是一种可重复使用的液氧/甲烷气体发生器循环发动机,能够提供 1 兆牛顿推力和 320 秒的 ISP。七台阿基米德发动机将推动 Neutron的第一级,第二级配备一台经过真空优化的阿基米德发动机。此外,Rocket Lab 指出,Neutron 的轻质复合结构意味着阿基米德不需要通常与大型火箭及其推进系统相关的巨大性能和复杂性。 相反,简化的引擎加快了开发和测试的时间表。 告别分离整流罩: 然而,Rocket Labs 表示,真正让 Neutron 的设计与众不同的是抓捕式的“饥饿河马”整流罩设计,它将整流罩作为第一级结构的一部分,并保持固定在平台上。Neutron 的 Hungry Hippo 整流罩钳口不会像传统整流罩那样从平台分离并掉入海洋,而是会张大以释放第二级和有效载荷,然后再次关闭准备带着第一级返回地球。降落在发射台上的是带有整流罩的竞争第一级,准备集成和发射新的第二级。据该司称,这种先进的设计可以加快发射频率,消除在海上捕获整流罩的高成本、低可靠性方法,并使第二级轻巧灵活。 高性能上面级: 这种方法的改变还消除了与第二级设计相关的限制,例如在升空期间暴露在低层大气的恶劣环境中。由于它将完成包围在第一级结构中,因此火箭实验室能够减轻其重量。Neutron 的第二级目前被设计为一次性的上面级,是一个 6 米长的碳纤维复合材料结构,带有一个真空优化的阿基米德发动机。