《科学家开发出广适用性水稻碱基编辑系统》

  • 来源专题:转基因生物新品种培育
  • 编译者: 王晶静
  • 发布时间:2021-03-04
  • 中国农业科学院植物保护研究所作物有害生物功能基因组研究创新团队首次将SpCas9突变体SpG和SpRY应用于植物,在水稻中实现NRN PAM和NYN PAM的靶向操作,开发的系列工具大大扩展了CRISPR系统在植物基因组中的应用范围。相关研究成果在线发表在《基因组生物学(Genome Biology)》上。

    据周焕斌研究员介绍,近几年来,基因组编辑技术发展迅速,并广泛应用于人类基因治疗、动植物分子育种等各领域。由于传统的化脓链球菌SpCas9和后期挖掘的各Cas蛋白为典型的富含鸟嘌呤G的PAM(G-PAM)识别类型,在应用中具有一定程度的局限性。研究人员一直在寻找各种新型CRISPR/Cas系统,以期突破对G-PAM识别特异性的限制,扩展各基因编辑工具在生物体基因组中的靶向范围。

    该研究聚焦SpCas9的2个新型突变体SpG和SpRY,研究发现SpG对NG PAM具有偏好性,但其活性低于团队之前挖掘的突变体SpCas9-NG。而SpRY在大量基因组靶位点上实现了高效编辑,对富含鸟嘌呤G和腺嘌呤A的PAM均具有偏好性。基于SpRY切口酶开发的胞嘧啶碱基编辑器rBE66通过识别NAG PAM对2个靶基因实现靶碱基定向编辑,编辑效率分别为26.00%和4.26%。将SpRY切口酶和腺苷脱氨酶TadA8e融合而开发的腺嘌呤碱基编辑器rBE62,能够有效识别NAA、NAT和NAC PAM,对3个靶基因的碱基编辑效率分别高达29.79%、93.75%和51.28%。此外,该研究揭示了SpRY具有高频的自编辑事件(即对T-DNA上的引导RNA序列进行编辑),而SpRY切口酶介导的碱基编辑的自编辑事件较低频发生。这些结果表明SpRY可用于水稻基因组定点编辑,尤其是单碱基编辑,并扩宽了CRISPR技术在植物基因组中编辑范围。该研究成果为后续基因组编辑衍生工具开发,以及将来植物基因功能研究材料和新种质材料的定制提供了有力的理论指导和技术支撑。

    该研究得到中国国家自然科学基金、中国农科院科技创新工程等项目支持。(通讯员 欧阳灿彬)

  • 原文来源:http://www.caas.cn/xwzx/kyjz/310077.html
相关报告
  • 《美科学家开发出靶向能力和编辑效率得到改善的碱基编辑器》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-29
    • 在一项新的研究中,来自美国布罗德研究所、哈佛大学和波士顿儿童医院的研究人员利用一种称为“噬菌体辅助的碱基编辑器连续进化(phage assisted continuous evolution of base editors, BE-PACE)”的系统开发出一种改进碱基编辑器的编辑效率的新方法。相关研究结果于2019年7月22日在线在Nature Biotechnology期刊上,论文标题为“Continuous evolution of base editors with expanded target compatibility and improved activity”。在这篇论文中,他们描述他们的新系统及其作用机制。 CRISPR基因编辑系统的开发使得通过对基因进行编辑来阻止遗传性疾病成为可能。但是这种系统的问题仍然存在---最值得注意的是,已有研究表明有可能对错误的基因进行了编辑。正因为如此,科学家们正在寻求提高这些系统的编辑准确性的方法,使得它们足够安全而可用于人类患者。 在这项新的研究中,这些研究人员开发出一种称为BE-PACE的系统,它可用于改进胞嘧啶碱基编辑器(CBE)。他们利用他们的系统进化出一种称为evoAPOBEC1-BE4max的CBE。他们报道他们的测试表明它对胞嘧啶(在GC序列中)进行编辑的效率是现有系统的26倍,即便它对所有其他的测试序列中的胞嘧啶进行编辑时,也仍然保持较高的编辑效率。他们进一步报道对一种经过进化的称为evoFERNY的脱氨酶的测试结果表明它比APOBEC1小29%。 这些研究人员指出,限制其他CBE的编辑效率的因素之一是APOBEC1对天然序列的偏好性,这导致GC基序发生较差的脱氨作用。为了克服这个问题,他们使用了PACE系统,这是因为它们能够在一天内进行多代选择、突变和复制。他们的目标是构建出具有改善的靶向能力的碱基编辑器。他们报道,他们开发的BE-PACE系统在过夜的宿主细胞培养物中以几乎十倍的噬菌体增殖速率进行了测试,而且它们展示出对携带碱基编辑器的噬菌体(下称碱基编辑器噬菌体)的选择性提高了1000倍。 这些研究人员还构建出另一种BE-PACE系统来解决APOBEC1的序列限制问题。这导致他们开发出的噬菌体克隆在测试期间的活性得到了28倍的改善。为了证实它们在碱基编辑上得到改进,他们对BE4max碱基编辑器的几种进化的脱氨酶变体进行了亚克隆,并使用向导RNA将它们插入到测试细胞中。
  • 《外媒:科学家编辑水稻DNA防御病原体》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-11-20
    • 参考消息网11月3日报道 外媒称,细菌性枯萎病袭击着东南亚和西非的稻田。这是一种被研究得非常透彻的作物疾病,它常常被用作研究微生物与其寄主植物间相互作用的一个模型系统。这种病原体被称为水稻黄单胞菌水稻致病变种,简称Xoo,它通过劫持一些外排糖的水稻基因来维持生存。研究人员已研究出如何编辑水稻的基因组以阻止这种劫持行为。 据美国阿尔斯科技网站10月31日报道,Xoo分泌与水稻的糖外排转运蛋白(SWEET)基因附近的DNA结合在一起、并激活它们的类转录激活因子样效应物(TALEs)。这些SWEET基因在植物中无处不在,它们透过细胞膜转运蔗糖。其基因表达是对Xoo具有易感性所必需的。 研究人员认为,修改水稻的SWEET基因将带来对Xoo的抵抗性,尤其是在已通过这种方式自然产生抵抗性的情况下。但截至目前,只有少数几种Xoo的基因特征得到确定,因此尚不清楚它是否还有其他攻击宿主的方式。  为了研究如何让水稻最有效地抵抗Xoo,即水稻的哪些SWEET基因需要改变以及如何改变,一个国际科学家小组首先研究了63个Xoo菌株,其中33个来自亚洲,30个来自非洲。研究发现,它们都利用TALEs来诱导SWEET基因的表达。 作为概念验证,科学家们随后用CRISPR技术编辑了Kitaake水稻中的三个SWEET基因附近的DNA,特别针对那些TALE蛋白质与之结合但不侵害周围DNA的DNA序列。 报道称,这种转基因水稻能抵抗所有已知Xoo菌株。Kitaake是一个粳稻品种,最适合此类研究,因为它开花期短且再生率高。Kitaake还可以用来培育日本和中国的水稻,以使之具有抵抗性。 研究小组用CRISPR技术修改了两个种植面积超过100万公顷的水稻品种。在田间试验中,经过编辑的水稻生长正常,就植株高度和其他农业相关指标而言,表现得很像其未经修改的亲本。关键在于,它能抵抗三种具有代表性的Xoo菌株。 来源:参考消息