《比利时科学家发现促进玉米增产基因》

  • 来源专题:农业科技前沿与政策咨询快报
  • 编译者: 李楠
  • 发布时间:2017-11-28
  • 玉米主要用作动物饲料,也可供人类食用,一小部分用于生产生物燃料。世界范围内,玉米年种植面积达1.8亿公顷,年产量接近10亿吨,是全球种植量最大的农作物。由于全球变暖以及极端天气状况对农业影响范围越来越广,研究新型玉米品种对保障充足的玉米产量极为重要,而通过选取促生长基因,育种者可以培育出改良的农作物品种,即使遭遇气候变化也能保证作物产量。

    日前,来自比利时研究机构VIB-UGent的科学家发现了一种能显著促进植物生长、提高玉米种子产量的基因——磷脂酶A1基因(PLA1),试验结果表明提高该基因的表达,可以使杂交玉米种子产量增产10%到15%。

    在此项研究中,德克·尹泽(Dirk Inzé)教授和希尔德·内利森(Hilde Nelissen)博士领导的 VIB-UGent科学家团队对玉米叶片发育的分子机制进行了研究。研究发现,磷脂酶A1的基因表达能够显著促进植物生长,并能使植物器官,如叶片、穗轴增大。细胞层面的研究结果也证明了磷脂酶A1能延长植物的生长期。希尔德·内利森博士称:“表达磷脂酶A1的植物生长期更长,它们的植株更大,能够产出更多籽粒,农民从中受益。”

    在比利时和美国进行的多季节田间试验都表明,磷脂酶A1能增加玉米自交系和杂交种的生物量和种子产量。德克·尹泽教授称:“玉米叶片作为研究模型为科学家提供了新的探索视角,对研究如何提高诸如玉米等重要农作物的产量具有重要作用。”后续的研究重点在于揭示磷脂酶A1基因提高作物产量其背后更精确的分子机制。

    另外,通过温室实验,研究人员发现磷脂酶A1对植物应对干旱胁迫也发挥着作用。磷脂酶A1的促生长特性在一定程度上可以减缓因长期缺水对植物生长造成的不良影响。《自然通讯》(Nature Communications)发表了温室试验结果、及在比利时和美国进行的为期两年的田间试验结果 。

    比利时的田间试验是与农业渔业研究所(Institute for Agricultural and Fisheries Research, ILVO)合作研究的,VIB与ILVO战略联盟的一项任务就是将基础研究成果转化为实际的农业应用。

    过去的几十年里,比利时的玉米种植显著增长,种植面积达24万公顷,是该国种植面积最广的农作物之一。

    (编译 李楠,编审 张学福)

相关报告
  • 《比利时研究团队发现植物抗旱的重要基因》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:徐倩
    • 发布时间:2017-11-28
    • 植物无法在资源变得稀缺时更换生长地点,只能通过对环境因素做出响应以实现自身生长的有效调节。干旱是抑制植物生长、造成作物减产的最主要因素,深入了解植物的干旱响应机制对于农业至关重要。来自根特大学(Ghent University)和VIB生命科学研究中心的科研人员,对植物如何适应水分限制条件提出了重要见解,为高产抗旱型作物的先进育种和基因工程提供了指导。该研究成果刊登在权威学术期刊《植物细胞》(Plant Cell)上。 科学家预测,气候变化将带来以干旱为主要表现形式的广泛农业问题,尤其在缺乏新鲜水源和灌溉设施的情况下问题更是频发,最终可能会导致极度的粮食短缺。可见,从基因层面找到帮助作物抗旱的新方法尤其重要。但在此之前,科学家们需要进一步了解干旱条件下控制植物生长速率的基因。 干旱条件下,有些植物生长受到抑制,有些则能正常生长。为深入了解这些生长调控基因及其遗传过程,研究人员将100种拟南芥模式植物置于轻度干旱条件下,对其遗传变异性进行细胞分析和分子分析。 结果显示100份拟南芥材料的抗旱性存在着极大差异:有些发育不良,另一些则正常生长。这一大规模研究使我们能够精确识别出在植物抵御干旱的防御机制中发挥关键作用的基因类别。尽管不同拟南芥材料对干旱的响应差异巨大,但在分子层面上,仅有少数基因在全部100种拟南芥中都受到了影响,这些基因便是植物干旱防御反应的核心。下一阶段将不局限于模式生物,也会在玉米等重要农业经济作物中对识别出的基因进行功能检测和分类研究。 (编译 徐倩)
  • 《新型转基因玉米产量提高10%》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-12-13
    • 长期以来,基因工程的支持者们一直坚信,它将有助于满足全球日益增长的粮食需求。然而,尽管已经培育出许多抗虫害和抗除草剂的转基因作物,科学家在促进农作物产量方面却一直难有作为。如今,研究人员首次证明,通过改变一种促进植物生长的基因,他们终于可以放心地将玉米产量提高10%,而不用管生长条件是好是坏。 “这太不可思议了。”并未参与该项研究的美国艾姆斯市爱荷华州立大学分子生物学家Kan Wang说。她表示,除了提高玉米产量外,新的转基因技术还将激励研究人员努力提高其他农作物的产量。 全世界种植最广泛的转基因作物(包括大豆、玉米和棉花)都是通过一些相对简单的基因改良创造出来的。例如,通过将细菌的一个基因添加到特定的农作物品种中,科学家赋予了它们合成一种可以杀死多种昆虫的蛋白质的能力。另一种简单的基因操作结果可以使农作物抵抗草甘膦或其他除草剂,这样做的一个好处是让农民可以在不侵蚀土壤的前提下除掉杂草。还有一种操作可以在干旱时保护农作物。但是,由于植物的生长过程涉及了许多复杂的遗传因素,因此想要培育出在良好条件下能够产出更多粮食的农作物,难度很大。 从2000年开始,世界各地的转基因公司开始认真筛选能够提高农作物产量的单个基因。然而只有少数经过鉴定的基因显示出了希望,并且由于成功率低,许多公司已经减少或停止筛选与农作物产量有关的基因。 但是Corteva农业科学公司(一家位于特拉华州威明顿的化学和种子公司)的研究人员决定研究那些像总开关一样影响农作物生长和产量的基因。 研究人员选择了在许多植物中常见的一类名为MADS-box基因,然后在其中选择了一种基因(zmm28)来改变玉米植株。研究调节发育的基因的挑战在于确保它们在正确的时间和正确的组织类型中开启了正确的数量。参与领导这项研究的Corteva农业科学公司的植物生理学家Jeff Habben说,如果基因过于活跃,“很容易把植物搞得一团糟”。 研究小组的目标是使zmm28与一个新的启动子融合,后者是一段控制基因激活时间的脱氧核糖核酸。在尝试了十几次之后,他们找到了一种可靠的方法。 通常,当玉米开始开花时,zmm28就会启动。而增加的启动子能够比自然发生更早地启动zmm28,并且在开花后继续促进基因的有益作用。 “如果你让基因工作得更努力、更长久,你就能让植物表现得更好。”Wang说。 研究人员在48种商用玉米中测试了增强基因的表现,这些玉米被称为杂交玉米,通常用于饲养牲畜。在2014年至2017年的美国玉米种植区田间试验中,研究人员发现,转基因杂交作物的产量通常比对照组作物多3%至5%。 研究小组本周在美国《国家科学院院刊》上发表报告称,有些玉米的产量增加了8%至10%。同时不管生长条件是好是坏,这种好处都是存在的。 “这是转基因作物在田间环境中对产量发挥实际作用的最好例子之一。”英国哈彭登市洛桑研究所农作物科学家Matthew Paul说。 导致玉米增产的原因有几个。首先,经过基因改造的植物的叶子要稍大一些,从而使植物将阳光转化为糖分的能力提高了8%到9%。 “这种增长确实是一件大事。”Corteva农业科学公司植物生理学家Jingrui Wu说,因为通过基因工程很难改善光合作用。 同时这些植物在利用氮的效率方面也提高了16%到18%。氮是一种重要的土壤营养物质,由于复杂的遗传因素,使其成为植物育种家难以控制的另一种特性。 比利时佛兰德斯VIB研究所分子生物学家Dirk Inze说:“从商业角度来说,这看起来很有希望。”Corteva农业科学公司已经向美国农业部(USDA)申请批准新的高产杂交品种。(虽然zmm28及其启动子在玉米中自然存在,但它们是使用被USDA监管的一种生物技术配对的。) Habben估计,这项新技术大概需要6到10年的时间才能获得世界各国的正式批准。Inze说,相关的调控基因很有可能提高其他谷物的产量。 玉米的大规模田间示范“强化了我们的信念,即如果我们处理得当,内在产量是可以提高的”。Wang说,“这确实会给人们带来灵感。” 相关论文信息:https://doi.org/10.1073/pnas.1902593116