《我国成功发射引力波暴高能电磁对应体全天监测器(怀柔一号)空间科学卫星》

  • 来源专题:空间引力波探测领域
  • 编译者: zmygw
  • 发布时间:2020-12-15
  • 12月10日4时14分,我国在西昌卫星发射中心用长征十一号遥九固体运载火箭将引力波暴高能电磁对应体全天监测器(Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor,简称GECAM)卫星发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。

      GECAM由中国科学院空间科学(二期)先导专项部署,2颗小卫星采用共轭轨道的星座布局,将对引力波伽马暴、快速射电暴高能辐射,特殊伽马暴和磁星爆发等高能天体爆发现象进行全天监测,推动破解黑洞、中子星等致密天体的形成和演化,以及双致密星并合之谜。此外,GECAM还将探测太阳耀斑、地球伽马闪和地球电子束等日地空间高能辐射现象,为进一步研究其物理机制提供科学观测数据。

      作为北京怀柔综合性国家科学中心空间科学实验室挂牌后发射的首颗科学卫星,中国科学院与北京市政府共同将GECAM卫星命名为“怀柔一号”。为利于科学传播,GECAM昵称为“极目”,两颗卫星“小极”和“小目”分布于地球两侧,形成两“极”之势,犹如二“目”,将对黑洞、中子星等极端天体的剧烈爆发现象进行观测,快速下传并发布观测警报, 引导国内外科学家利用各类望远镜进行后随观测。

      GECAM工程任务由中国科学院负责组织实施,国家空间科学中心负责工程大总体和地面支撑系统的研制建设,微小卫星创新研究院负责卫星系统研制,高能物理研究所为任务科学目标提出单位并负责卫星有效载荷、科学应用系统研制建设,空天信息创新研究院负责科学数据的地面接收。测控系统由中国西安卫星测控中心负责。

      用于这次发射任务的运载火箭由中国航天科技集团有限公司第一研究院(中国运载火箭技术研究院)研制生产,此次任务是长征十一号固体运载火箭的第11次飞行任务。

      空间科学战略性先导科技专项是中国科学院“率先行动”计划的重要组成部分,专项一期部署发射了“悟空”“墨子”“慧眼”“实践十号”等科学卫星,作为建设科技强国的标志性成果,先后多次入选习近平主席新年贺词。2019年8月31日,专项二期首颗技术验证卫星——微重力技术实验卫星“太极一号”成功发射,迈出我国空间引力波探测奠基性的第一步。除“太极一号”和GECAM卫星外,专项二期还部署了先进天基太阳天文台(ASO-S)、爱因斯坦探针(EP)和太阳风-磁层相互作用全景成像卫星(SMILE)等空间科学卫星计划,将在未来3至4年内陆续发射,有望在太阳爆发活动、时域天文学、日地关系等方面取得重大原创性成果。

相关报告
  • 《从引力波到伽马暴探测——记在GECAM卫星发射之时》

    • 来源专题:空间引力波探测领域
    • 编译者:zmygw
    • 发布时间:2021-01-09
    • 编者按:2020年12月10日,我国在西昌卫星发射中心用长征十一号遥九固体运载火箭将引力波暴高能电磁对应体全天监测器卫星发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。
  • 《“天问一号”火星探测器发射成功 中国科学院发挥重要作用》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-07-27
    • 7月23日12时41分,搭载着“天问一号”探测器的长征五号遥四运载火箭在我国文昌卫星发射中心点火发射。火箭飞行约2167秒后,探测器与火箭成功分离,进入预定轨道,发射取得圆满成功。按计划,“天问一号”探测器发射升空后,将进入地火转移轨道,开始为期近7个月的奔火之旅。 在“天问一号”任务中,中国科学院继续牵头论证提出了任务科学目标与有效载荷配置方案,继续承担了地面应用系统、有效载荷分系统、甚长基线干涉测量(VLBI)测轨分系统和多项工程关键重要产品的研制任务,后续还将与国家航天局联合组织开展科学数据应用研究。 中国科学院国家天文台、国家空间科学中心、上海天文台、云南天文台、新疆天文台、长春光学精密机械与物理研究所、西安光学精密机械研究所、空天信息创新研究院、光电技术研究所、上海技术物理研究所、地质与地球物理研究所、中国科学技术大学、合肥物质科学研究院固体物理研究所等13家单位,作为主要研制单位参与了“天问一号”相关任务研制,突破了地火远距离大数据量数传,高精度、低时延、多目标干涉测量及定轨预报,关键有效载荷研制和数据处理技术,特种航天材料研制等多项关键技术,为“天问一号”发射任务圆满成功发挥了不可替代的作用。 火星探测任务(“天问一号”任务)于2016年经国务院批复实施。该任务是我国首次自主实施火星探测,将向火星轨道发射一颗由环绕器和着陆巡视器组成的探测器,着陆巡视器由进入舱和巡视器(火星车)组成,开展环绕和巡视探测。共配置13台有效载荷和2台载荷数据处理器。 环绕探测着眼于开展火星全球性、整体性和综合性的详查探测,建立火星总体性和全局性的科学认知。配置7台有效载荷,包括中分辨率相机、高分辨率相机、环绕器次表层探测雷达、火星矿物光谱分析仪、火星磁强计、火星离子与中性粒子分析仪、火星能量粒子分析仪。巡视探测专注于火星表面重点地区的高精度、高分辨的精细探测和就位分析。火星车上配置6台有效载荷,包括多光谱相机、地形相机、火星车次表层探测雷达、火星表面成分探测仪、火星表面磁场探测仪、火星气象测量仪。通过环绕器与巡视器的独立探测和天地协同探测,实现对火星的表面形貌、土壤特性、物质成分、水冰、大气电离层、磁场等的科学探测,并开展相关研究。 通过探月工程嫦娥一号、二号、三号、四号任务的成功实施,中国科学院已在月球与深空探测数据接收处理、VLBI、轻小型化科学载荷研制、关键航天材料等领域培养和组建了一支专业化、高素质、经验丰富、适应国际月球与深空探测发展趋势的工程管理、技术开发人才队伍。同时,在国内迅速崛起的行星科学等新兴研究领域,中国科学院也涌现出一批优秀的中青年科学家,有望在火星生命信息、火星内部局部构造、火星磁场及其形成与演化、火星地质特征和演化历史等研究领域取得一系列原创科学成果。 来源:中国科学院网站