《下一代太阳能电池能效创新高:能量转化效率21.6%》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-09-09
  •  澳大利亚国立大学官方网站近日宣布,该校研究人员在太阳能电池能效转换方面开辟了新的领域,人们借此可以窥见该技术未来的发展前景。

      该校工程与计算机科学学院副教授托马斯·怀特、博士彭军(音译)等研究人员创造了21.6%的能量转化效率的新纪录,这是钙钛矿电池在一定尺寸上达到的最高效率。这意味着注入电池的阳光中有21.6%会被转化为能量。

      托马斯·怀特称,与之形成对照的是,目前安装在屋顶上的比较典型的太阳能电池板的效率只有17%到18%。

      “太阳能电池的研发,主要基于三点,即让电池变得高效、稳定、便宜。”怀特认为,“就此来看,钙钛矿电池是太阳能电池的未来,也是下一代电池的重点所在。”

      “就钙钛矿太阳能电池而言,其现在的能量转换效率是富有竞争力的,而且成本是其一大卖点。现在真正的挑战是使它们足够稳定,以便可以在屋顶上使用。例如,它们必须能够在极端温度下使用25到30年。”怀特表示,其最终的目标是将这些钙钛矿与硅结合成串联太阳能电池,“把这两种材料放在一起,可能会比单独一种材料的效率更高”。

      怀特和他的团队多年来一直致力于改进钙钛矿太阳能电池。钙钛矿材料含有丰富而廉价的化学元素,包括碳、氢、氮、碘和铅等。

      “目前95%的太阳能电池是由硅制成的。它是一种非常好的材料,但在未来5到10年内,其效率将达到上限。” 怀特说,“而要想制造出真正好的串联太阳能电池,必须让两种电池尽可能高效地工作。因为硅不能变得更好,所以我们一直专注于另一半的组成——钙钛矿。”

      新的效率纪录意味着钙钛矿电池现在每平方米可以产生216瓦的电力。

      怀特说:“当它们规模小的时候,就很难准确地测量它们,而且也不一定能代表如果规模扩大会发生什么。因此,我们的研究结果在许多人认为最小的尺度—— 一平方厘米上是最高的。”

      为了达到这一创纪录的结果,彭军开发了一种新型纳米结构材料。“一种高效率的太阳能电池必须能够同时产生高电压和高电流。”彭军说,“虽然很难同时实现这两种功能,但电池中的纳米结构层使之成为可能。”

      该团队的研究成果得到了CSIRO光伏性能实验室的独立验证。该实验室是南半球唯一一个被认证为太阳能电池效率达到国际标准的实验室。

      该研究获得了澳大利亚可再生能源署的资助。

相关报告
  • 《澳大利亚研究人员发现,下一代太阳能电池能效创新高》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-04
    • 澳大利亚国立大学官方网站近日宣布,该校研究人员在太阳能电池能效转换方面开辟了新的领域,人们借此可以窥见该技术未来的发展前景。 该校工程与计算机科学学院副教授托马斯·怀特、博士彭军(音译)等研究人员创造了21.6%的能量转化效率的新纪录,这是钙钛矿电池在一定尺寸上达到的最高效率。这意味着注入电池的阳光中有21.6%会被转化为能量。 托马斯·怀特称,与之形成对照的是,目前安装在屋顶上的比较典型的太阳能电池板的效率只有17%到18%。 “太阳能电池的研发,主要基于三点,即让电池变得高效、稳定、便宜。”怀特认为,“就此来看,钙钛矿电池是太阳能电池的未来,也是下一代电池的重点所在。” “就钙钛矿太阳能电池而言,其现在的能量转换效率是富有竞争力的,而且成本是其一大卖点。现在真正的挑战是使它们足够稳定,以便可以在屋顶上使用。例如,它们必须能够在极端温度下使用25到30年。”怀特表示,其最终的目标是将这些钙钛矿与硅结合成串联太阳能电池,“把这两种材料放在一起,可能会比单独一种材料的效率更高”。 怀特和他的团队多年来一直致力于改进钙钛矿太阳能电池。钙钛矿材料含有丰富而廉价的化学元素,包括碳、氢、氮、碘和铅等。 “目前95%的太阳能电池是由硅制成的。它是一种非常好的材料,但在未来5到10年内,其效率将达到上限。” 怀特说,“而要想制造出真正好的串联太阳能电池,必须让两种电池尽可能高效地工作。因为硅不能变得更好,所以我们一直专注于另一半的组成——钙钛矿。” 新的效率纪录意味着钙钛矿电池现在每平方米可以产生216瓦的电力。 怀特说:“当它们规模小的时候,就很难准确地测量它们,而且也不一定能代表如果规模扩大会发生什么。因此,我们的研究结果在许多人认为最小的尺度—— 一平方厘米上是最高的。” 为了达到这一创纪录的结果,彭军开发了一种新型纳米结构材料。“一种高效率的太阳能电池必须能够同时产生高电压和高电流。”彭军说,“虽然很难同时实现这两种功能,但电池中的纳米结构层使之成为可能。” 该团队的研究成果得到了CSIRO光伏性能实验室的独立验证。该实验室是南半球唯一一个被认证为太阳能电池效率达到国际标准的实验室。 该研究获得了澳大利亚可再生能源署的资助。
  • 《22.4%!太阳能电池光电转化效率纪录再创新高》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-03
    • 来自加州大学洛杉矶分校Samueli(萨缪利)工程学院的材料科学家开发出了一种高效的薄膜太阳能电池,由于其双层设计,它能利用阳光产生比典型的太阳能电池板更多的能量。 该器件是通过将一层薄薄的钙钛矿(该钙钛矿是一种廉价的铅和碘化合物,这种化合物已被证明可以非常有效地捕获来自太阳光的能量)喷洒到一种市面上流行的太阳能电池上制成的。形成器件底层的太阳能电池由铜,铟,镓和硒化物(或简称为CIGS)的化合物制成。 由加州大学洛杉矶分校Samueli院系的研究人员开发的钙钛矿—CIGS太阳能电池可转换22.4%的太阳能量,开创了太阳能电池的新记录。(图片来源:加州大学洛杉矶分校Samueli工程学院) 该团队的新电池转换了22.4%来自太阳的能量,这是钙钛矿—CIGS串联太阳能电池的功率转换效率的新记录。这一表现在美国能源部国家可再生能源实验室的独立测试中得到了证实。由IBM旗下的Thomas J. Watson研究中心的一个小组于2015年创下的前一项纪录为10.9%。)UCLA器件的效率与目前主导光伏市场的多晶硅太阳能电池的效率相似。 该研究发表在“Science”杂志上,(文章英文名为“High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells”)由Yang、加州大学洛杉矶分校的Carol和材料科学教授Lawrence E. Tannas Jr.领导。 Yang说:“通过我们的串联太阳能电池设计,我们在同一设备区域的两个不同的太阳光谱中吸收能量。与单独的CIGS层相比,这增加了太阳光产生的能量。” Yang补充说,喷涂在钙钛矿层上的技术可以很容易且廉价地结合到现有的太阳能电池制造工艺中。 电池的CIGS基层厚约2μm,吸收太阳光并以18.7%的效率自行产生能量,但添加1μm厚的钙钛矿层可提高其效率,就像在汽车发动机上添加涡轮增压器可以改善汽车性能一样。这两层由加州大学洛杉矶分校研究人员设计的纳米级界面连接在了一起;接口有助于为器件提供更高的电压,从而增加其可输出的功率。 整个组件安装在厚度约为2㎜的玻璃基板上。Yang 说:“我们的技术使现有的CIGS太阳能电池性能比原来的性能提高了近20%,这意味着能源成本可降低20%。” 他补充说,使用双层设计的器件最终可以实现30%的功率转换效率。这将是研究小组为之努力的下一个目标。