《An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • A transparent stretchable (TS) gated sensor array with high optical transparency, conformality, and high stretchability of up to 70% is demonstrated. The TS-gated sensor array has high responsivity to temperature changes in objects and human skin. This unprecedented TS-gated sensor array, as well as the integrated platform of the TS-gated sensor with a transparent and stretchable strain sensor, show great potential for application to wearable skin electronics for recognition of human activity.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201504441/abstract
相关报告
  • 《Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract image A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.
  • 《Stretchable Electronics: Materials Strategies and Devices》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract New electronic materials have the potential to enable wearable computers, personal health monitors, wall-scale displays and other systems that are not easily achieved with established wafer based technologies. A traditional focus of this field is on the development of materials for circuits that can be formed on bendable substrates, such as sheets of plastic or steel foil. More recent efforts seek to achieve similar systems on fully elastic substrates for electronics that can be stretched, compressed, twisted and deformed in ways that are much more extreme than simple bending. This article highlights some recent progress in this area, with an emphasis on materials approaches and demonstrated devices.