《2030单颗芯片容纳1万亿晶体管,中国科学家设计1nm晶体管惊艳全世界》

  • 来源专题:数控机床与工业机器人
  • 编译者: icad
  • 发布时间:2023-01-13
  • 1947年12月,人类第一代半导体放大器件在贝尔实验室诞生,其发明者肖克利及其研究小组成员将这一器件命名为 晶体管 。
      今年是晶体管诞生的第75年,其发展已经陷入了瓶颈,我们是否还能找到新方法延续摩尔定律?
      2022年,我们依然需要新的晶体管
      为了纪念晶体管被发明75周年,IEEE(电气与电子工程师协会)电子器件分会(E lectron Device Society )组织了一场活动,在此活动上有Fin-FET的发明者胡正明教授对晶体管的过去进行回顾。
      我们的世界是否还需要更好的晶体管?
      胡正明在演讲中给出了肯定的回答,并给出了三个理由:
      第一,随着晶体管的改进,人类掌握了从未想象到的新能力,例如计算和高速通信、互联网、智能手机、内存和存储、计算机技术、人工智能,可以想象的是,未来还会有其他新技术涌现出来;
      第二,晶体管广泛的应用正在改变所有技术、工业和科学,同时半导体技术的演进不想其他技术一样受到其材料和能源使用的限制,IC使用相对较少的材料就可以生产,并且正在变得越来越小,使用的材料也越来越少,IC本身也在变得更快更高效;
      第三,理论而言,信息处理所需的能量依然可以减少到今天所需能量的千分之一以下,虽然我们可能还不知道如何达到这种理论效率,但我们知道这在理论上可行,而其他大部分技术的能源效率已经达到理论极限。
    2030年,单颗 芯片 可容纳1万亿个晶体管
      需要新的晶体管是事实,但研发制造出新的晶体管已经举步维艰,无论是在经济上还是在技术上,都遇到了新的困难。
      近期,Fin-FET的进步能够带来的性能提升和功耗降低变得越来越有限,业界正在采用一种新的3D CMOS结构的环栅(GAA)制造新的晶体管。
      英特尔为了进一步缩小晶体管的三维尺寸,用RibbonFET的结构实现了GAA,但是发现源极和漏极之间的距离进一步缩小的同时,会产生比较明显的短沟道效应而漏电。
      如果将传统的通道材料硅材料换成非硅的新材料,就能改善这种情况。学术界也有了一些相关的研究,使用一种名为过渡金属硫化物的材料作为通道材料,这种材料只有三个原子的厚度,电子流动性好,作为通道材料有天然优势。
      在这种2D材料方面,针对这种材料,英特尔也做了很多研究和分析,并在会议上展示了一种全环绕栅极堆叠式纳米片结构,使用了厚度仅三个原子的2D通道材料,同时在室温下实现了近似理想的低漏电流双栅极结构晶体管开关。
      除此之外,3D封装技术也能进一步提升单个设备中晶体管的数目。
      英特尔在3D封装方面也取得了新进展,与IEDM 2021上公布的成果相比,英特尔IEDM 2022上展示的最新混合键合研究将功率密度和性能又提升了10倍。
      另外,通过混合键合技术将互连间距继续微缩到3微米,英特尔实现了与单片式系统级芯片(system-on-chip)连接相似的互连密度和带宽。加上将多芯片互连的工艺里需要的材料换成无机材料,以便于与封装厂多种工艺要求兼容。
      虽然进一步实现晶体管的微缩是一件需要耗费巨大财力和人力的事情,但依然有像英特尔这样的企业在持续投入研发,并对晶体管的未来抱有期望。
      英特尔认为,从2023年到2030年,单个设备中晶体管的数目将翻10倍,即从1千亿个晶体管到1万亿个晶体管。
      要实现这个目标,需要整个行业持续投入研发,尝试更多可行的技术。
      中国科学家设计 1nm 晶体管惊艳全世界
      在不久之前,我们曾披露,复旦大学微电子学院的周鹏教授,包文中研究员及信息科学与工程学院的万景研究员,创新地提出了硅基二维异质集成叠层晶体管技术。
      该技术利用成熟的后端工艺将新型二维材料集成在硅基芯片上,并利用两者高度匹配的物理特性,成功实现 4 英寸大规模三维异质集成互补场效应晶体管。
      该技术成果的文章发表在 nature electronics,并受到大家广泛关注,以下为引言部分——
    大规模集成电路的特征尺寸缩小依赖于新型材料、器件架构和工艺流程的持续创新,大数据和即时数据的传输逐渐成为信息技术发展的主要趋势。目前已经提出了诸如鳍型场效应晶体管(FinFET)、全栅(GAA)以及垂直堆叠的叉片和CFET器件等巧妙的器件架构,缩小晶体管的尺寸可增加集成密度并提高性能。其中,CFET架构(PMOS和NMOS器件垂直堆叠并由同一公共栅极控制)已被证明可以减少42-50%的面积,性能提高7%,与传统的互补金属氧化物半导体(CMOS)器件相比,成本降低了12%10。因此,它提供了将摩尔定律进一步扩展到1nm节点以下的巨大应用前景。
      最近,Intel公司报道的3D堆叠GAA n/p-Si纳米带CMOS展示了最先进的Si工艺技术,其显示出高集成密度和优异的短沟道控制能力。这种3D/3D堆叠CFET架构是硅器件中的一个了不起的突破。然而,硅基的CFET面临许多制造挑战,例如复杂的工艺流程、对热预算的额外要求、源极和漏极外延生长的困难以及电子/空穴迁移率失配和阈值电压(VTH)调谐的补偿。为了通过双金属栅极调整阈值电压,不可避免地需要额外的光刻、蚀刻和沉积工艺,这使得工艺相当复杂。在电子器件中使用二维半导体的研究已经开始从单一器件的工作过渡到IC的开发。然而,在将二维系统引入IC行业之前,仍有许多挑战需要解决,包括晶圆级制造、性能匹配、,将2D半导体并入硅互补金属氧化物半导体基IC是一种替代方法,可用于弥合新兴材料与工业应用之间的差距。然而,这需要与传统硅技术兼容的2D材料的器件架构和集成方法。
      在本文中,我们提出了一种异质CFET架构,它结合了晶圆级绝缘体上硅(SOI)pFET和二硫化钼(MoS2)nFET。SOI技术自然能够抑制短沟道效应(SCE),降低寄生电容,并具有优异的亚阈值特性和与现代硅工艺的完全兼容性,全耗尽SOI(FD-SOI)技术已经用于先进的VLSI电路,低至22 nm和14 nm技术节点。另一方面,2D半导体在超大规模CMOS、光电子和传感器中显示出良好的潜力由于其原子厚度、丰富的带结构和高的表面与体积比。MoS2中的电子迁移率与硅中的空穴迁移率相似,可以使用化学气相沉积(CVD)在晶片规模上合成高质量的MoS2,并在低温下转移。我们通过迁移率匹配(具体地,通过选择MoS2层的厚度)缓解nFET/pFET中电子和空穴之间的迁移率失配问题,堆叠的n/p金属栅极,并引入额外的控制栅极。我们使用该方法创建了一个SOI–MoS2 CFET反相器,在电源电压(VDD)为3V时电压增益高达142.3,在100 mV的低VDD时电压增益为1.2,功耗为64 pW。我们还通过开发SOI–MoS2 CFETs的4英寸制造工艺来验证该方法的制造潜力。
      如果对具体内容感兴趣,可前往全文阅读。
    1nm的晶体管候选,复旦大学团队CFET研究全披露
     更多信息可以来这里获取==>> 电子技术应用-AET << .
  • 原文来源:http://www.chinaaet.com/article/3000157931
相关报告
  • 《1.2万亿晶体管40万颗核心:巨无霸芯片成功卖出》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-06-12
    • 去年9月份的时候,著名的半导体公司Cerebras Systems就已经发布了旗下自家最大的芯片也就是Wafer Scale Engine,事实上这颗芯片也是目前世界上最大的芯片之一,这颗芯片采用的是台积电的16nm制程工艺制造,同时在面积上拥有46626平方毫米,大约是普通GPU的100倍,可以说已经和制造芯片的晶圆差不多大小了,而现在这块巨无霸芯片终于有了买家也就是美国能源部。 目前Cerebras已经和美国能源部达成了合作,美国能源部旗下的阿贡国家实验室将会采用这一颗芯片,未来通过这一块芯片打造全新的超算平台,拥有传统搭载1000颗GPU的集群,和GPU集群相比,“CS-1”超算平台在体积上大幅降低,同时功耗也有很大的优势,大约是普通GPU集群比如说谷歌的TPU V3的五分之一。至于搭建这个超算平台的成本,Cerebras透露称在数百万美元。此外美国匹兹堡超级计算机中心就购买了两套超算平台,采购价为500万美元,大约是3500万人民币。 Wafer Scale Engine拥有1.2万亿颗晶体管,40万个AI核心、18GB SRAM缓存、9PB/s内存带宽、100Pb/s互连带宽,单芯片的功耗也达到了15千瓦,当然对于购买集群电脑的大客户来说,这点功耗并不是什么大事。
  • 《科学家用锗生产最灵活自适应晶体管》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-24
    • 锗的特殊性质和专用编程栅电极的使用,使人们有可能为一种开创芯片技术新纪元的新元件制造出原型。据近日发表在美国化学学会《纳米杂志》上的研究,奥地利维也纳工业大学没有依靠硅基晶体管技术,而是利用锗生产出世界上最灵活的晶体管。这种新型自适应晶体管可以在运行时动态切换,能执行不同的逻辑任务。这从根本上改变了芯片设计的可能性,并在人工智能、神经网络甚至逻辑领域开辟了全新机会。   电荷在晶体管中的传输方式取决于使用的材料:要么是带有负电荷的自由移动电子,要么是单个原子中可能缺少电子,所以该点是带正电荷的。这就是所谓的“空穴”。   在新型晶体管中,电子和空穴以一种非常特殊的方式同时操作。维也纳工业大学固态电子研究所博士后研究员马西亚尔·西斯塔尼解释道:“通过极其干净的高质量接口,我们用一根由锗制成的极细的导线连接两个电极。在锗的上方,我们放置了一个栅电极。具有决定性的一步是,我们的晶体管具有另一个控制电极,该电极放置在锗和金属之间的界面上。它可以对晶体管的功能进行动态编程。”   这种器件结构使得分别控制电子和空穴成为可能。西斯塔尼补充道,“使用锗是因为锗有一种非常特殊的电子结构:当施加电压时,电流刚开始会增加,然而,在某一阈值之后,电流再次下降,这被称为负差分电阻。在控制电极的帮助下,我们可以调节这个阈值所在的电压。这提供了新的自由度,我们可以利用这一自由度让晶体管实现所需特性。例如,可以将逻辑电路中的与非门切换到或非门。”   到目前为止,电子设备的智能只是由几个晶体管的互连实现,而每个晶体管都只有相当原始的功能。在未来,这种智能可以让新晶体管本身的适应性来实现。由于适应性的提高,以前需要160个晶体管的算术运算现在可以用24个晶体管完成。这样一来,电路的速度和能效也可以显著提高。   总编辑圈点   晶体管是一种可变电流开关,基于输入电压控制输出电流。与机械开关不同的是,它利用电信号来控制自身的开合。一直以来,硅都是制作晶体管的绝对主力,近年来,砷化镓、氮化镓、石墨烯……人类寻找新材料的努力也在持续。本文所提到的研究并非要寻找一种晶体管新材料,而是引入锗这种具有特殊电子结构的元素,让晶体管更为灵活智能,提高晶体管的适应性。研究人员希望,新晶体管能成为传统晶体管的得力“助攻”,在节能和提高算力上发挥作用。