《首次解析!Cell: 斯坦福科学家利用类器官精准定位新冠病毒进出鼻腔细胞的途径》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-01-16
  • 大家都知道这场持续了三年之久的疫情是由新型冠状病毒引起的,可能还有些人了解新冠病毒是一个单链RNA病毒,它是使用自己的刺突蛋白,与细胞上的血管紧张素转化酶酶2(简称ACE2)受体结合来完成识别的,接着病毒就会进入宿主细胞并开始复制,最终引发疾病。但病毒究竟是如何进入呼吸系统的,病毒进入呼吸道上皮细胞以及如何在细胞间传播的分子机制尚不清楚。

    2023年1月5日,来自斯坦福大学的科研团队在著名期刊Cell杂志在线发表了一篇名为《SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming》的研究文章,这项研究首次详细阐述了新冠病毒感染呼吸道上皮细胞的分子机制,研究人员发现病毒通过ACE2受体附着在上皮细胞的纤毛上,并且使用纤毛作为进入细胞的通道。

    鼻子是上呼吸道粘膜免疫的重要组成部分,它参与宿主保护的免疫稳态。鼻粘膜防御主要有两种类型,从生理角度上来说,由紧密结合的纤毛细胞、杯状细胞和基底上皮细胞、双层黏液层和基底膜构成的屏障是最主要的防御手段,但我们还不清楚哪些类型的细胞最先被感染。

    作者首先利用原代细胞培养分化的手段生成了纤毛细胞、杯状细胞和基底细胞的鼻上皮类器官,这种类器官包括了正常人上气道上皮的形态和功能,接着用新冠病毒去感染培养的类器官,结果发现新冠病毒核衣壳蛋白和刺突蛋白只有在感染后的6、24 和 48 小时的时候在纤毛细胞中可见,这表明纤毛细胞更加容易被早期感染,因此,纤毛细胞是SARS-CoV-2在鼻上皮中的主要进入部位。

    由于ACE2 和 TMPRSS2 是 SARS-CoV-2 感染的核心,并定位于呼吸道纤毛细胞上,通过染色定位实验作者发现这两种关键的受体蛋白在培养的类器官上也有同样的定位,因此作者假设SARS-CoV-2和其他呼吸道病毒通过ACE2附着在纤毛上以穿透PCL,并使病毒能够通过粘液蛋白层运输。我们刚刚提过黏液层是维持免疫稳态的一种重要的免疫屏障,因此研究人员用一种黏蛋白特异性的酶处理类器官,这种酶可以分解黏蛋白形成的网络结构,结果发现这加速了病毒的感染速度。

    为了测试SARS-CoV-2是否在早期特异性的结合纤毛细胞,作者利用扫描和透射电子显微镜观察感染了病毒的类器官,结果证实多个病毒粒子附着在纤毛上,这表明纤毛被 SARS-CoV-2利用以穿过鼻上皮屏障。通过重组刺突蛋白与荧光偶联,并用延时显微镜观察说明SARS-CoV-2与纤毛ACE2受体结合以促进细胞进入。

     

    基于以上的实验结果,作者假设减少纤毛的数量会阻碍病毒感染的进程,通过敲低对纤毛细胞形成至关重要的CEP83蛋白(不影响上皮或杯状细胞的分化),作者发现CEP83下调的确抑制了24和48hpi的类器官SARS-CoV-2感染水平。


    进一步的,为了更好地了解鼻上皮中的病毒感染,作者探究了病毒从少数最初感染的细胞中排出的情况,结果发现病毒感染促进了细胞丝状伪足突起,诱导含病毒的丝状伪足可能对SARS-CoV-2的释放和后代病毒粒子在细胞间传播很重要。因此,作者使用透射电镜和IF染色系统地展示了原代气道上皮细胞中的微绒毛样结构。在纤毛状类器官的顶端表面上观察到两类突起:长而宽的活动纤毛和粗短的圆顶状微绒毛(图3A),接下来,通过共聚焦和免疫组化实验作者证明了SARS-CoV-2与微绒毛相互作用,使其能在受感染动物的呼吸道内传播。

    而进一步的研究表明SARS-CoV-2使微绒毛发生延伸,通过调节微绒毛的结构和功能,通过促进高度延伸和分支的微绒毛的形成来促进病毒的排出。

     

    原发性纤毛运动障碍(PCD患者),这是一种罕见的常染色体隐性遗传病,虽然呼吸道纤毛的数量和长度是正常的,但是失去了纤毛摆动和病原体清除的功能。通过使用患者的类器官培养物,作者发现在患者和健康供体中 24 hpi 时 SARS-CoV-2 感染细胞的百分比相似,这表明突变不会影响初始感染率,然而,在 48 hpi 时,PCD 患者的SARS-CoV-2感染细胞少于健康供体,这表明其在感染后期很重要。

    除此之外,作者还探讨了细胞间的接触是否影响病毒的转移。我们知道呼吸上皮由多层细胞组成,然而,直到48 hpi时,只有最上层的细胞被病毒感染,下层的细胞很少被感染。因此,细胞间接触可能不是病毒在鼻上皮中传播的唯一途径。虽然病毒可能通过鼻上皮的细胞间接触传播,但作者认为传播取决于顶端表面的粘液流动。


    鉴于在细胞中调节激酶能够控制细胞骨架的生成,作者探究了是哪些激酶被调控后促进了微绒毛的高度延伸,通过磷酸化蛋白质组学的手段,作者最终确定了五种激酶,包括细胞骨架重组p21活化激酶1和4(PAK1和PAK4),丝氨酸/苏氨酸激酶(AKT1/2),丝裂原活化蛋白激酶(p38)、丝裂原活化蛋白激酶(ERK1)和含有蛋白激酶1的ROCK1。作者确定这些激酶是否在感染细胞中磷酸化,所有五种药物均在类器官中被激活。

    在动物实验中,研究人员采用鼻喷雾剂将SLK和PAK4激酶抑制剂应用于K18-hACE2转基因小鼠,结果PAK4激酶抑制剂可以部分抑制感染的水平,这为开发鼻腔喷雾剂来预防病毒感染提供了借鉴的范例。

    总的来说,作者发现新冠病毒会首先感染呼吸道纤毛细胞,如果移除纤毛,则可阻止新冠病毒和其他呼吸道病毒的感染,同时,侵入的病毒会激活细胞中激酶来促进细胞骨架的形成,通过高度延伸的微绒毛结构将新生成的病毒送到黏液层,从而提高了病毒的传播能力。

    事实上,并不是只有新冠病毒会通过这种方式进行传播,其他呼吸道病毒也可能通过同样的方式突破免疫屏障,就新冠病毒本身而言,大体来说,抗新冠病毒的药物可以归纳为两大类,一是阻止病毒和宿主细胞结合,二是阻止新病毒在宿主细胞内的产生,但是本项研究提出了一个新的预防性策略,那就是使用鼻喷剂或者其他预防性的短期药物来延迟病毒的进入、退出或传播,而这将有助于免疫系统及时赶上和到达,以阻止全面的感染发生。

    参考文献:

    1. Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell. 2023 Jan 5;186(1):112-130.e20.

    2. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020 Jun;145(6):1499-1509.
    3. Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021 Mar;14(2):305-316.

  • 原文来源:https://news.bioon.com/article/1660e5625778.html
相关报告
  • 《新冠病毒进出鼻腔途径确定》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-01-12
    • 在近日出版的《细胞》杂志上发表的一项研究中,美国斯坦福大学病理学、微生物学和免疫学教授彼得·杰克逊博士团队精确定位了新冠病毒进入和离开鼻腔细胞的途径。研究人员称,上呼吸道不仅是肺部感染的源头,也是传播给他人的源头。事实证明,抑制病毒在呼吸道细胞中的进出,对减少高传染性新冠病毒的传播有效。   鼻腔和呼吸道的上皮组织主要由3种细胞类型组成:基底细胞、杯状细胞和多纤毛细胞,它们约占鼻上皮细胞总数的80%。多纤毛细胞形成一种保护屏障,防止病毒进入呼吸道。研究人员放大了在多纤毛上皮细胞上发现的两种结构:纤毛和微绒毛。   研究人员使用了一种复杂的组织培养方法来产生呼吸道上皮类器官,以模仿正常的呼吸道。虽然缺乏血管和免疫细胞,但这些器官在其他方面完全涵盖了鼻黏膜上皮的结构,包括完整的粘液层和发育良好的多纤毛细胞。   研究人员将培养的类器官与新冠病毒放在同一个培养皿中。电子显微镜显示,病毒最初只附着在纤毛上。在类器官与新冠病毒一起孵育6小时后,许多病毒颗粒从尖端向下散布在纤毛的两侧。即使在24小时后,病毒也只在少数细胞中复制。大规模复制需要48小时。   研究发现,降低鼻腔上皮细胞中一种对纤毛形成至关重要的蛋白质的水平,可极大地减缓对新冠病毒的感染,证明人类纤毛鼻腔上皮细胞是新冠病毒在鼻腔上皮组织中的主要进入部位。   研究人员精确定位了细胞中的酶,这些酶在感染新冠病毒后被大量激活,导致了微绒毛变成巨大的、分枝的树状结构,其上附着病毒颗粒。这些病毒可被推入黏液—黏蛋白层,在那里,它们可沿着黏液“漂浮”,感染其他更远的细胞。抑制这些酶使这种变异停止,并极大地减少了病毒向其他细胞的传播。   这些发现为鼻用药物开发确定了新的靶点,这种药物可阻止纤毛运动或微绒毛变大,以防止甚至是未知的呼吸道病毒感染。
  • 《人类的心脏可能是被病毒搞大的?斯坦福科学家《细胞》子刊新发现》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-09
    • 在一部名叫《圣诞怪杰》(How the Grinch Stole Christmas)的电影里,金·凯瑞(Jim Carrey)扮演的绿色精灵格林奇“心胸狭窄”,心脏只有人类的1/4大小,他偷走了圣诞节的一切喜悦和美好。不过后来,小镇上的人们向他展示了圣诞节的真正含义(在逆境中彼此相爱),他的心脏膨大到了原来的三倍。 字面意义上的“心变大”,在健康人类身上并不是一蹴而就的过程。不过,人类和大猩猩等大型灵长动物在演化过程中,心脏尺寸的确发生了“格林奇式”的转变,相比最初的小型哺乳动物,增加了好几倍。一般认为,更大的心脏增加了血液供应能力,从而一定程度上成就了我们如今相对较大的体型。 最近,斯坦福大学医学院的Kitchener Wilson博士与其心血管研究所所长吴庆明(Joseph Wu)教授等科学家合作,揭示了促进心脏变大的一个因素:竟然是默默藏身于我们基因组里的病毒序列。 这些病毒片段来自古老的病毒感染。几千万年,某些逆转录病毒感染了我们的猿类祖先,并把自己的遗传物质插入了宿主的基因组,一直流传下来,被称为内源性逆转录病毒。 多年来人们认为,DNA里混进来的这些古老搭车客对宿主细胞的发育或功能并无影响。但最近,科学家们开始意识到,其中某些序列对邻近基因的表达很重要,特别 让这支研究团队感兴趣的,是内源性逆转录病毒衍生的一种长链非编码RNA序列,被称为BANCR。除了出现在某些癌症中,BANCR仅仅在人类等少数几种大型灵长动物发育中的心肌细胞里活跃。 心肌细胞是难以再生的心脏细胞,它们的协调收缩导致了心脏跳动。而BANCR特别存在于胎儿心肌细胞中这一事实表明,它对心脏发育十分重要。 “我们利用诱导多能干细胞技术,研究了BANCR表达在人类、大猩猩、黑猩猩和猕猴的胚胎心肌细胞中的影响,发现它会有助于发育中的心肌细胞进行迁移。” Wilson博士说。 一些有趣的迹象表明,BANCR对心肌细胞迁移的作用会影响心脏大小。 啮齿类动物体内没有BANCR。而研究人员在胚胎小鼠中人工导入BANCR以后,动物发育出的心脏拥有大于正常尺寸的左心室。对大鼠心脏注射一种表达BANCR的病毒,在特定实验条件下,同样导致了心脏的扩张。这些结果进一步表明,BANCR具有促进心脏增大的作用。 此外,研究人员发现有一种叫扩张型心肌病的儿童罕见病,患者心脏异常大而且功能差,表达的BANCR则高于正常水平。这种疾病可能危及生命。研究者谨慎地期望,他们的发现或能应用于未来的可能疗法。 “如今我们有一些证据表明,这种逆转录病毒序列特异地影响了心脏的大小和功能。”Wilson博士总结说,“我们看到,灵长类祖先身上发生了古老的病毒感染,后来所有携带这些序列的灵长动物都有了更大的心脏。” 事实上,我们体内的这类病毒“化石”并不罕见,人类基因组的8%~10%由内源性逆转录病毒组成,是实际编码蛋白质的基因的四五倍。越来越多的证据显示,这些古老病毒感染的残留物可能参与了癌症、精神分裂、多发性硬化等诸多疾病的发生,而它们看来还改变了人类演化的进程,如今从人类胚胎成形之处就开始影响我们。