《欧洲核子研究中心开始测试检测中微子的大型新技术原型》

  • 来源专题:声学研究所所级服务
  • 编译者: ioalib2
  • 发布时间:2019-10-12
  • 主页.物理.普通物理. . . . 2019年10月10日,欧洲核子研究中心开始测试检测中微子的新技术的大型原型。 图为费米国家加速器实验室的库尔特·里塞尔曼,展示了在双相ProtoDUNE探测器上观测到的宇宙射线粘体所造的轨迹。可见,在液体的龙轨道中,通过相关的电磁活动,可以看见电位。信用: 原

相关报告
  • 《格芯与欧洲微电子中心于AI芯片研发取得突破》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2020-07-13
    • 日前,全球领先的纳米电子及数字技术研究中心IMEC(欧洲微电子中心)和格罗方德共同发布了一种新型AI芯片AnIA的硬件展示。基于IMEC模拟内存计算(AiMC)架构与格芯22FDX技术,新芯片可在模拟域的内存计算硬件上执行深度神经网络计算,帮助低功耗设备实现边缘推理。同时,这项新技术在隐私保护、安全性和延迟性方面的优势,将会对从智能扬声器到自动驾驶汽车等各种边缘设备中的AI程序产生重大影响。 从早期的数字计算机时代开始,处理器已经从存储器中分离出来。在内存容量指数级提升以后,CPU和内存之间的数据传输带宽却成为了瓶颈,这也就是人们所说的冯·诺伊曼瓶颈。这种限制会掩盖实际的计算时间,特别是在依赖于大型向量矩阵乘法的神经网络中。这些计算的执行需要数字计算机的精密度,以及大量的能量支持。然而,如果是采用较低精度的模拟技术执行向量-矩阵乘法,神经网络也可以获得准确的计算结果。 为了应对这一挑战,IMEC及其工业合作伙伴,包括格芯在内,在IMEC的工业合作机器学习计划开发了一种新的体系结构,通过在SRAM单元中执行模拟计算消除了冯·诺依曼瓶颈。由此产生的模拟推理加速器(AnIA)以格芯22FDX半导体平台为基础,具有超高的能效。特性测试显示,AnIA的功率效率最高可达到2900 TOPS/W。通常由数据中心的机器学习驱动的微型传感器及低功耗边缘设备中的模式识别,现在可以在这个节能加速器上进行本地执行。 IMEC机器学习项目主管Diederik Verkest表示:“AnIA的成功流片是验证模拟内存计算架构的重要一步。参考设计的实现不仅表明AiMC在实践中是可能的,且它取得的能效要比数字加速器好10到100倍。在IMEC的机器学习程序中,我们会对现有的和新兴的内存设备进行优化,以更好地进行模拟内存计算。目前看来,这些成果具有良好的前景,这也鼓励我们进一步发展这项技术,朝着10000 TOPS/W的目标迈进。” 格芯计算和有线基础设施产品管理副总裁Hiren Majmudar则表示:“一直以来,格罗方德与IMEC都保持着密切合作。此次双方利用GF低功耗、高性能的22FDX平台成功研发出新的AnIA芯片,也是向业界展示22FDX如何降低能源密集型AI和机器学习应用能耗的关键一步。” 未来,格罗方德将把AiMC芯片融合进22FDX平台,用于开发AI市场的差异化解决方案。目前,搭载AiMC的22FDX正在GF最先进的300mm生产线上进行开发,该生产线位于德国德累斯顿1号工厂。
  • 《英国国家物理研究院(NPL)与欧洲核子研究组织(CERN)合作促进新的核技术发展》

    • 编译者:李晓萌
    • 发布时间:2024-06-12
    • 近日,英国国家物理研究院(NPL)已与欧洲核子研究组织(CERN)签署了一份谅解备忘录,加入其位于瑞士日内瓦的中子飞行时间设施(n_TOF)。n_TOF是世界领先的中子测量设施,提供宽能量范围的高通量中子束。n_TOF合作包括全球50多个研究机构,这些研究机构正在实施从基础科学到应用核物理的一系列科学抱负的研究计划。 在欧洲核子研究中心设施,NPL将对与包括先进核反应堆(第四代)和燃料循环在内的新核技术开发相关的中子引发的核反应进行精确的横截面测量。NPL的一个特别兴趣是研究在一系列材料中产生氢、氚和氦的反应。这些数据支撑了氚繁殖毯、面向等离子体的装甲部件和反应堆部件抗辐射损伤寿命的发展,所有这些都是聚变商业化的关键。 核聚变被视为一种长期可持续的能源。英国政府最近概述了到2050年将英国核能发电量增加四倍的计划,并在该国现有聚变计划的基础上增加6.5亿英镑的新投资。核能投资的很大一部分将用于私营部门和大学,目的是刺激紧张的研究和开发,以克服与核聚变发电相关的具体技术挑战。其中包括由所涉及的强烈中子通量引起的材料问题,以及为实现点火创造条件,以确保核聚变适合作为安全、稳定和可持续的能源。 NPL团队希望与其他n_TOF成员合作,为n_TOF的专门实验计划开辟道路,这将导致对下一代裂变和聚变反应堆的更可靠的模拟和操作理解。NPL将与一系列其他英国中心密切合作,包括曼彻斯特大学、萨里大学、伯明翰大学、兰开斯特大学、约克大学和UKAEA。NPL雄心的关键是NPL研究生院(PGI)的支持,该研究生院已经帮助获得了两名博士生,使NPL能够在合作中发挥主导作用。 拟议的合作可能会带来长期的技术和经济效益,特别是在开发用于能源生产的“下一代”核聚变系统方面。该计划还将有助于巩固长期的NPL中子研究计划,利用最近资助的对现有现场中子设施的升级进行关键测量和可追溯链,并允许进一步传播核计量和放射化学方面基于NPL的关键专业知识。 战略业务发展经理Cyrus Larijani表示:“我很高兴NPL将加入n_TOF合作,这扩大了NPL的外部网络,并为我们的科学家提供了一个新的机会来领导应对世界挑战的解决方案。这也是英国多年来在欧洲核子研究中心的投资的有效回报。” NPL高级科学家Giuseppe Lorusso表示:“这是一个参与前线核物理研究并为长期悬而未决的问题提供答案的绝佳机会。作为n_TOF科学委员会的成员,我为影响国际研究的方向提供了一个重要的平台。” NPL核与辐射科学与计量研究员Paddy Regan教授表示:“欧洲核子研究中心和NPL之间关于n_TOF合作的新正式协议应该会改变英国中子研究能力和影响的游戏规则。特别是,拟议的与下一代核裂变和聚变研究相关的未来国际研究计划是这项工作在国际上的前沿。”