《多环天然产物全合成研究取得进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-08-21
  • 甾体类天然产物在生物体内常常充当信号分子,因此具有重要的生理活性。该家族中的一小部分成员具有破缺的骨架结构,被称为开环甾体 (secosteroids),其化学合成和生物活性研究尚未引起充分关注。2015年,筑波大学的Kigoshi研究组报道了从海兔Aplysia kurodai中分离的开环甾醇aplysiasecosterol A (Angew. Chem. Int. Ed. 2015, 54, 7073)。该化合物的自然含量非常稀少,但具有特别的化学结构:三环双酮母核通过碳-碳单键连接高度取代的环戊烷侧链,分子中连续8个手性中心对化学合成提出了一定挑战。

    中国科学院上海有机化学研究所李昂课题组近期完成了系列多环天然产物的全合成 (Angew. Chem. Int. Ed. 2018, 57, 952; J. Am. Chem. Soc. 2018, 140, 4227; J. Am. Chem. Soc. 2018, 140, 9025)。最近,该组的陆钊洪、张翔、郭志聪等合作完成了aplysiasecosterol A的首次全合成 (J. Am. Chem. Soc. 2018, 140, 9211)。基于该分子结构中隐含的对称性,他们采取去对称化策略构建了左片段的全碳季碳手性中心,并通过自由基环化形成刚性的三环结构;利用Aggarwal锂化-硼基化和Zweifel-Evans烯基化,快捷地制备了含有连续叔碳手性中心的右片段。两个片段的连接借助了Oshima等发展的Reformatsky类型反应,再经脱水得到共轭烯酮中间体。合成后期的关键步骤是氢原子转移引发的自由基环化反应,以较高的环合效率和立体选择性一步形成三个连续的全碳手性中心。此合成路线的最长线性序列仅有14步。

    此项研究得到了中国科学院战略性先导科技专项(B类)、国家自然科学基金相关人才计划、创新研究群体等的资助。

  • 原文来源:http://news.bioon.com/article/6726185.html
相关报告
  • 《蛋白酰化修饰调控天然产物生物合成研究取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-24
    • 近期,中国科学院上海药物研究所谭敏佳课题组与华东理工大学叶邦策课题组合作研究,揭示了蛋白赖氨酸酰化修饰在天然产物的生物合成代谢通路中的调控新机制,研究工作发表在8月Cell Chemical Biology(25(8): 984-995. doi: 10.1016/j.chembiol.2018.05.005)和5月ACS Chemical Biology(13(5):1200-1208. doi: 10.1021/acschembio.7b01068)杂志上。 细胞重要中间代谢产物酰基-CoA类化合物,作为供体直接参与生物体内的蛋白酰化修饰,从而调控多种重要生物学过程,如表观遗传、能量代谢、精子发育等,是目前生命科学研究的热点之一。在生物体次级代谢产物生物合成过程中,酰基-CoA扮演的角色一直被认为是聚酮类、生物碱类、脂肪酸类及异戊二烯类等多种重要天然产物的合成前体,然而目前人们对其作为酰化修饰供体调控次级代谢产物合成过程的作用认知明显不足。 两篇文章分别以丙酰-CoA依赖性的大环内脂类红霉素、丙二酰-CoA依赖性的多酚类赤松素以及丁酰-CoA依赖性的丁醇生物合成过程中,丙酰化修饰、丙二酰化修饰以及丁酰化修饰为研究对象,通过蛋白质组学技术系统性解析蛋白酰化修饰在不同化学骨架类型的天然产物生物合成过程中的形成机制及调控功能。证明了生物体内高浓度酰基-CoA的积累在有助于补充产物合成前体的同时,也会造成蛋白酰化修饰引起的反馈调控,导致关键酶受到抑制并影响产物产率。这种由于胞内代谢物浓度的“过载”引起生物体代谢失衡的状态,广泛存在于多种不同化学骨架类型天然产物生物合成过程中,并存在于内源性产物合成途径和人工构建产物合成途径中。此外,进一步的研究表明,基于酰化修饰底物和修饰酶的翻译后修饰代谢工程策略(PTM_ME),如保护修饰位点、优化修饰酶系统等,有助于缓解胞内碳流“过载”的压力,相对提高目标产物产量。 这两项研究工作首次揭示了蛋白酰化修饰在次生代谢产物生物合成调控中的普遍性,并为代谢工程提供了从翻译后修饰水平改造的全新策略。 谭敏佳和叶邦策为两篇文章的共同通讯作者,上海药物所博士后徐骏宇和华东理工大学博士生徐娅在两位老师的指导下合作完成该项目。参与这项工作的还有上海药物所叶阳课题组和芝加哥大学教授赵英明。此外,该项目受到国家自然科学基金委重大研究计划、面上项目、国家重点研发计划“精准医学研究”重点专项和中国博士后科学基金的支持。
  • 《脂肽类天然产物Totopotensamides的生物合成研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-05-15
    • 中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室(LMB)的研究团队在脂肽糖苷类抗生素Totopotensamides(TPMs)研究中取得新进展,研究成果近期发表于《ACS Chemical Biology》。 谭彬博士研究生和张庆波副研究员为该文章共同第一作者,张长生为通讯作者。谭彬还获得由ACS Chemical Biology专门配送的作者介绍(https://doi.org/10.1021/acschembio.0c00202)。 脂肽类天然产物是由非核糖体肽(NRPS)和聚酮(PKS)杂合途径合成的一类抗生素,结构中既含有亲水性氨基酸单元,又含有疏水性脂肪链,表现出抗菌、抗肿瘤和抗病毒等多种生物活性。早在二十世纪五十年代末,以粘菌素(colistin)和多粘菌素B(polymyxin B)为代表的脂肽类抗生素就获得了临床应用;达托霉素(daptomycin)自2003年上市以来,一直被认为是治疗由革兰氏阳性细菌引起的复杂皮肤感染和心内膜炎的最后一道屏障;另外,还有10多种脂肽类抗生素已上市或进入临床研究阶段。因此,脂肽类化合物具有良好的成药性、发展潜力和应用前景。 TPM A是从源自南海深海沉积物样品的链霉菌Streptomyces pactum SCSIO 02999中分离获得的一个脂肽糖苷类化合物,其结构中包括6个氨基酸(其中两个为非天然氨基酸)和一个含糖基化修饰的独特17碳脂肪链。前期研究中,研究团队通过转录调控策略在深海链霉菌SCSIO 02999中原位激活了TPM A的生物合成基因簇,通过转录调控策略,敲除两个负调控基因(totR3/totR5)和超表达一个正调控基因(totR1),在所获得的工程菌中实现了主产物TPM A的产量提高和一个磺酸化的新产物TPM C的分离鉴定(图1);在糖基转移酶编码基因totG的基因敲除突变株中获得了苷元TPM B,证明了TotG负责在脂肪链上添加糖基(Organic Letters, 2017, 19, 5697-5700) 后续研究发现,原位激活的TPM A高产工程菌在传代发酵过程中不稳定,极易退化,不利于进行TPM A生物合成研究。研究人员采用细菌人工染色体(BAC)载体克隆表达策略,将TPM A基因簇在模式菌株S. lividans TK64中进行了异源表达,并通过调控基因工程和发酵条件优化使得TPM A的产量提高了约6倍,而且实现了稳定传代。TPM A中含有一个非天然氨基酸4-chloro-6-methyl-5,7-dihydroxyphenylglycine(ClMeDPG),推测其来源于前体3,5-dihydroxyphenylglycine(DPG)。DPG是一类非常重要的非天然氨基酸,是多种具有重要活性的糖肽类抗生素(如balhimycin、chloroeremomycin、vancomycin、ristocetin和teicoplanin等)的结构单元。研究人员通过DPG生物合成基因totC1-totC4的异源表达和氨基转移酶TotC4的体外生化实验阐明了DPG的合成途径,并确定了其绝对构型为S型;此外还通过基因敲除实验证明ClMeDPG生物合成中两个后修饰酶基因totH(卤化酶基因)和totM(甲基转移酶基因)的功能,并通过中间体的水解进一步确定了TPMs中DPG结构单元的绝对构型为S型,从而采用多重手段从多个角度纠正了文献报道中的R构型。但卤化酶TotH和甲基转移酶TotM对所测试的小分子底物没有催化活性。进一步进化树分析表明,TOTH和TOTM可能是在NRPS组装线上对底物行使在线修饰功能。 该研究为脂肽类天然产物TPM A的应用和开发奠定了基础,为复杂天然产物绝对构型的确定提供了新的方法和依据。 本研究得到国家自然科学基金(21472203)和广东省海洋经济发展专项基金(粤自然资合[2020]032号)的资助,前者支持TPM A的生物合成研究,后者注重TPM A相关的新药候选化合物的规模化制备和成药性评价研究。   相关论文信息:https://pubs.acs.org/doi/abs/10.1021/acschembio.9b00997