《【生物世界】PNAS:陈春英院士团队发现,微塑料可作为碳源进入体内碳循环,干扰代谢和肠道健康》

  • 来源专题:食品安全与健康
  • 编译者: 杨娇
  • 发布时间:2025-05-13
  • 2025 年 5 月 5 日,国家纳米科学中心陈春英院士团队在《美国国家科学院院刊》(PNAS)上发表了题为:Incorporation of polylactic acid microplastics into the carbon cycle as carbon source to remodel the endogenous metabolism of the gut 的研究论文。

    研究团队聚焦 PLA 微塑料(PLA-MP)的体内转化展开系统研究。通过空间功能分析,发现结肠微生物是 PLA-MP 降解的核心功能单元,其分泌的特异性酯酶 FrsA 通过 α/β 水解结构域精准识别并切割 PLA 酯键,实现对 PLA-MP 的高效降解。研究团队通过多组学分析,进一步发现了微生物组成和 FrsA 蛋白表达之间的相关性,结合菌群-蛋白互作网络与单菌功能验证,证实鼷鼠螺杆菌(Helicobacter muridarum)与居肠巴恩斯氏菌(Barnesiella viscericola)主导了 PLA-MP 的肠道降解进程,为靶向调控塑料生物转化提供关键靶点。 核心发现:可降解塑料在肠道内的“变形记” 1、肠道微生物的“剪刀手”:聚乳酸微塑料(PLA-MP)被拆解成危险分子; 降解工厂:PLA-MP 进入肠道后,会被结肠中的“微生物工厂”盯上,主导降解的是两种肠道细菌——鼷鼠螺杆菌(Helicobacter muridarum)和居肠巴恩斯氏菌(Barnesiella viscericola),它们分泌一把名为酯酶 FrsA 的分子剪刀,将塑料大分子剪碎成乳酸小分子。 暗藏危机:降解后的乳酸进入肠道微生物的“代谢流水线”,转化为尿酸和 D-乳酸等有害副产品。前者可能引发痛风,后者则会阻碍尿酸排泄,导致血液中尿酸堆积! 2、碳循环“劫持”:塑料竟成肠道细胞的“燃料” 偷梁换柱:通过 13C 同位素追踪技术,研究团队发现,PLA 微塑料的碳原子被肠道细胞“薅走”,成为合成氨基酸和遗传物质的原料。看似“变废为宝”,实则隐患重重! 能量断供:微塑料的“鸠占鹊巢”导致肠道细胞正常能量源——短链脂肪酸(例如乙酸、丁酸)大幅减少,削弱肠道屏障功能,引发“漏肠”风险。 3、代谢紊乱“连锁反应”:食欲下降、体重减轻 小鼠实验显示,长期摄入 PLA 微塑料会导致食欲减退、体重下降,肠道菌群结构紊乱(有益菌减少,致病菌增加)。值得注意的是,即使停止接触微塑料 21 天,代谢异常仍难以恢复。 为什么“可降解”≠安全? 自然降解≠人体降解:PLA 在工业堆肥中需高温高湿(60℃、湿度50-70%)才能分解,而人体肠道温度仅 37℃,这一温度下对 PLA 的降解效率很低,导致 PLA 微塑料滞留时间长。 微生物的“塑料胃口”:长期摄入可能让肠道菌群“认贼作父”,把塑料当主食,破坏原本的膳食纤维代谢平衡。 这项研究给我们的警示: 1、警惕“伪环保”陷阱:可降解塑料并非完全无害,微塑料污染问题同样严峻! 2、日常防护建议:减少一次性塑料制品使用,尤其避免高温食物接触 PLA 包装(高温会加速微塑料释放);多吃富含膳食纤维的食物(例如燕麦、蔬菜),维持肠道菌群健康,对抗塑料干扰。 3、呼吁政策升级:需重新评估可降解塑料的安全性标准,推动真正无害材料的研发。 总的来说,这项研究首次阐明了聚乳酸微塑料(PLA-MP)在肠道内的完整碳循环过程,揭示其对宿主代谢的潜在负面影响,为评估可降解塑料的安全性提供科学依据。这项研究也是一记警钟,提醒我们:环保不能止步于“可降解”标签,真正的绿色未来需要更智慧的科技与更审慎的选择。下次拿起“环保塑料”制品时,或许该多想一想:它真的“安全”吗?

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzU1MzMxMzcyMg==&mid=2247777726&idx=1&sn=1b30fd1b699ff12708a538c78299261e&scene=0#wechat_redirect
相关报告
  • 《微生物研究所发现B族肠道病毒通用受体并解析病毒利用“双受体系统”入侵的作用机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-05-21
    • 2019年5月16日,中国科学院微生物研究所高福团队与北京大学魏文胜团队,首都医科大学附属北京儿童医院谢正德团队联合,在Cell杂志上发表了题为Human neonatal Fc receptor is the cellular uncoating receptor for Enterovirus B的文章。该论文中,研究人员利用CRISPR筛选技术,发现人类新生儿Fc受体(human neonatal Fc receptor, FcRn)是多个B族肠道病毒的通用脱衣壳受体,并通过解析病毒与其吸附受体(attachment receptor)和脱衣壳受体(uncoating receptor)在不同pH条件下复合物的原子/近原子水平高分辨率电镜结构,从分子水平揭示了“双受体系统”中两种受体的不同作用机制,系统地阐明了肠道病毒感染宿主细胞的入侵机制。本研究在B族肠道病毒的致病研究和药物开发,非囊膜病毒的入侵机制研究方面均具有重要意义。 B族肠道病毒(Enterovirus B ,EV-B)属于小RNA病毒科(Picornaviridae),肠道病毒属(Enterovirus)。包括埃可病毒(Echovirus),柯萨奇病毒B,柯萨奇病毒A9,以及多个新发现的B族肠道病毒血清型。 B族肠道病毒感染是常见的新生儿期感染性疾病病因之一,可导致新生儿和青少年病毒性脑炎,脑膜炎,脑膜脑炎等疾病,部分病例留有严重后遗症,严重时可致命。还可导致急性驰缓性瘫痪(AFP),非特异性皮疹,肝炎,肺炎,凝血障碍和手足口等疾病。2019年5月11日,广东省卫生健康委员会查办了一起发生在南方医科大学顺德医院的严重医疗事故,这是由肠道病毒(埃可病毒11型)导致的医院感染事件,造成了5例患有新生儿肺炎等基础疾病的患儿死亡。在我国,埃可等B族肠道病毒长期以来是很大一部分儿童脑炎,脑膜炎病例的致病病原,长期范围内在多个省份均有感染病例。此外,在世界范围的流行造成的公共卫生事件也均有报道。但是此前,除柯萨奇病毒B之外,埃可病毒等大多数B族肠道病毒的致病机制以及跨越血脑屏障机制尚不清楚,决定其感染细胞的关键受体尚未发现和报道。导致埃可等B族肠道病毒无特异性药物,无疫苗,无用于药物疫苗研发的动物模型。因此,研究团队进行了埃可等B族肠道病毒的受体和入侵机制相关研究。 研究人员选取其中致病性较强的血清型埃可病毒6型(Echo 6),通过CRISPR-Cas9膜蛋白基因组筛选技术,发现人类新生儿Fc受体是病毒入侵细胞的一个关键受体。新生儿Fc受体是由FCGRT基因表达的α链和β2-微球蛋白共同组成的异源二聚体,是一个重要的免疫因子,其主要功能有从母体通过胎盘向胎儿转运保护性抗体,帮助新生儿从肠道吸收母乳中的抗体,以及在成人体内介导抗体“回收”等。该研究发现,这种对胎儿和婴幼儿起重要作用的免疫因子可以被B族肠道病毒“绑架”,作为其入侵宿主细胞的关键受体。 本研究中,研究人员检测了B族肠道病毒各进化分支中具代表性的17个毒株(分属15个血清型),除Echo 6, Echo 30的两个原型株外,均为我国近年来的流行株。检测发现,除柯萨奇B4,B5之外,其余15个毒株均依赖于FcRn来完成其感染过程,其中包括致病性较强的柯萨奇病毒A9,埃可病毒6,9,11,30等。该研究揭示了FcRn是B族肠道病毒的一个通用受体。 研究发现,与之前报道的埃可病毒表面吸附受体不同(如CD55等),FcRn是一个脱衣壳受体。当病毒颗粒与受体直接结合后,,在生理条件下以及在受体和脂质膜的共同作用下,病毒完成了入侵细胞时必须的脱衣壳过程,最后将遗传物质释放到宿主细胞内。 为了进一步阐明病毒和受体的互作机制, 研究人员利用冷冻电镜技术,解析了Echo 6病毒,及Echo 6病毒与其吸附受体CD55的复合物,脱衣壳受体FcRn的复合物,在不同pH条件下的原子/近原子水平高分辨率电镜结构(共7个电镜结构,2.9-3.8 ?)。结果表明,Echo 6及Echo 6-CD55的复合物在中性和酸性pH条件下均稳定。FcRn结合在正二十面体病毒表面由VP1蛋白形成的“峡谷”(Canyon)样结构部位。在酸性条件下,FcRn诱导病毒表面蛋白发生变构,使得峡谷内部维持病毒粒子稳定性的脂类分子(又称“口袋因子”,pocket factor)释放,从而起始脱衣壳和遗传物质释放过程。本研究首次在近原子水平的病毒-受体复合物结构中捕捉到pocket factor释放的中间态;首次在分子水平清晰展示介导脂类分子转运口袋附近关键氨基酸的构象变化;并首次以原子/近原子水平高分辨率电镜结构,系统阐明了非囊膜病毒入侵过程中“双受体系统”的作用机制。 中国科学院微生物研究所助理研究员赵欣,北京大学博士后张桂根,中国科学技术大学与中国科学院微生物研究所联合培养博士生刘升,首都医科大学附属北京儿童医院副研究员陈祥鹏为本文的并列第一作者;高福院士和北京大学魏文胜研究员,首都医科大学附属北京儿童医院谢正德研究员为论文共同通讯作者。中国科学院苏州医工所高山研究员,中国疾控中心病毒病研究所张勇研究员,微生物所齐建勋研究员、施一研究员、严景华研究员,以及中国科学院微生物研究所,北京生命科学研究院高福院士团队成员等对本项目给予了大力支持。本研究得到了中国科学院战略性先导科技专项项目、科技部重点研发计划、国家科技重大专项、国家自然科学基金等的经费支持。   
  • 《科学家发现肠道微生物组对饮食健康的影响》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-01
    • 人体微生物群落是一个复杂的微生物生态系统,其组成对人的终身健康起着至关重要的作用。然而,人们对健康状况与肠道微生物群之间的具体分子机制知之甚少。 为了研究饮食、微生物组和这些微生物产生的一组小分子化学物质("代谢组")之间的相互作用,Jane Ferguson博士及其同事分析了136名健康受试者的饮食,并对他们的微生物组和代谢组进行了分析。 他们的数据表明,肠道微生物组的组成影响饮食的代谢,这些微生物通过调节特定的代谢产物及其下游信号通路,可能影响宿主的健康。例如,摄入植物性营养物质和人工甜味剂与循环代谢产物的差异有关,特别是胆汁酸,而这取决于微生物组的组成。 该小组发表在《Frontiers in Genetics》杂志上的研究结果表明,肠道微生物组的组成可以调节膳食营养物质的代谢方式,从而对代谢健康产生潜在的下游影响。