《天津工生所在三维碳纳米生物电极构筑方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-03-11
  • 三维碳纳米复合材料有优良的理化和机械性能,具有易合成、成本低、形貌可控等优点,近年来被广泛用于酶的固定化载体电极,应用于生物燃料电池、电化学分析、光电催化等领域。

    目前,三维碳纳米复合材料主要由大量一维、二维碳纳米材料混合组成,整体结构中界面原子所占比例较高,导致界面接触电阻较大、导电率较低,从而影响电极性能。近日,中国科学院天津工业生物技术研究所体外合成生物中心研究员朱之光带领的团队针对这一问题,开发了一种连续型三维碳纳米复合材料,用于生物电极的制备和生物燃料电池的应用。该研究通过高温碳化一种方管型结构的导电聚合物(聚吡咯),使其形成连续型的三维碳纳米材料,具有优异的导电性。同时该方管材料的四壁经高温塌陷,很好地为酶提供了附着点,提高了材料的表面积和生物兼容性。在固定葡萄糖氧化酶和漆酶之后,构建的葡萄糖 / 氧气生物燃料电池具有 1.16V 电压和 0.35mW/cm 2 的输出功率,在 2mA 条件下可持续放电 50 小时以上,并点亮 LED 灯。该研究为新型三维碳纳米材料的构筑及其在生物电化学系统中的应用提供了新思路和新方法。

    该研究获得中国科学院重点部署项目( ZDRW-ZS-2016-3S )、国家自然科学基金项目( 21706273 和 21878324 )的支持,相关成果发表在 Biosensors & Bioelectronics 上,天津工生所助理研究员康泽朋为论文第一作者,朱之光为论文通讯作者。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=445740
相关报告
  • 《苏州纳米所在仿生人工肌肉研究方面取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-06-26
    •   仿生肌肉纤维在外界刺激下能够产生类生物肌肉的收缩运动,作为一种新型的驱动器,有望推动仿生软体机器人、智能变翼飞行器、可穿戴及可植入医疗技术等方向的创新发展。螺旋仿生肌肉纤维凭借其独特的驱动放大结构可以输出优异的驱动性能。但在收缩前需要对螺旋仿生肌肉纤维施加张力将纤维相邻的螺环分开为其收缩提供空间,而且其回复过程也需要相同的应力将纤维拉回原长,这导致在一个驱动循环过程中螺旋仿生肌肉纤维的净做功为零。   针对上述问题,中国科学院苏州纳米所李清文、邸江涛研究员等报道了一种无预应力、可自回复并能高效循环做功的仿生肌肉纤维。该仿生肌肉纤维以碳纳米管(CNT)纤维的弹性螺旋结构驱动回复,并利用液晶弹性体(LCE)的可逆相变产生驱动形变。所获得的肌肉纤维表现出56.9%的可逆收缩量,1522%/s的收缩速率,7.03 kW kg?1的功率密度和32,000次的稳定循环。  通过连续的浸渍涂覆固化技术实现了复合纤维的连续制备,随后进行并股加捻得到螺旋纤维。其中,CNT纤维表面的沟道初步诱导了液晶分子的排列,加捻进一步诱导液晶分子重排变为相对有序的状态,复合纤维在温度刺激下产生形变。(图1)   经过加捻的复合纤维表面的LCE从无序变为有序,偏光显微镜和WAXS的结果都证明了这一点,加捻后LCE的取向变好,取向因子增加,表明螺旋应力有效诱导了液晶分子的排列(图2)。   目前文献中报道的仿生肌肉纤维在收缩和恢复过程中都需要施加恒应力(图3a,循环Ⅰ),整个过程纤维的净做功为零。本工作开发的纤维在通电时收缩提起负载,断电后无需负载回复到原长(图3a,循环Ⅱ),纤维的净做功大于零。该有效做功特性对于仿生肌肉纤维的应用具有重要意义。对复合纤维加捻使得LCE在CNT沟槽中沿着CNT取向形成液晶态。在电热的作用下液晶高分子链的刚性棒向无序相转变,导致相邻碳纳米管受到应力而解捻,进而产生收缩驱动。在电热驱动训练过程中复合纤维中的CNT纤维骨架被加工成具有螺环张开且扭矩平衡的结构,纤维受热收缩会对CNT纤维骨架压缩进而储存了弹性势能。断电后弹性势能的释放使得复合纤维恢复到原来大螺距、扭矩平衡的结构。这说明本工作中报道的仿生肌肉纤维的回复不需要外力辅助。因此该仿生肌肉纤维实现了有效循环做功。复合仿生肌肉纤维的驱动量高达56.9%,最大做功能力为2.11 J/g,与文献中报道的LCE纤维驱动器相比,该纤维做功能力处于最大值。在自恢复模式下,纤维循环32,000圈后驱动性能依然保持良好,具有优异的循环稳定性。(图3)  基于LCE/CNT螺旋纤维优异的驱动性能及自恢复特性。研究团队将这种高性能的仿生肌肉纤维作为驱动单元与机械结构结合起来,演示了其在类内窥镜上的作用,可以实现内窥镜镜头的三向弯曲。进一步将纤维集束与仿生手臂结合,模仿人的手臂实现了拉车的动作。此外,基于纤维的快速响应特性,利用其瞬间的爆发力,纤维在机械爬虫及踢足球场景下都具有一定的应用潜力。(图4)   相关工作以Pretension-Free and Self-Recoverable Coiled Artificial Muscle Fibers with Powerful Cyclic Work Capability为题发表在ACS Nano上。论文第一作者为中国科学院苏州纳米所硕士生崔波,通讯作者为邸江涛研究员和李清文研究员。该工作得到了国家重点研发计划和国家自然科学基金等项目的支持。
  • 《前沿 | 上海光源纳米三维成像线站用户取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-12-04
    • 基于全场透射显微术的上海光源纳米三维成像线站BL18B具有三维结构成像分析上的独特优势,能够为纳米材料、能源、环境等众多领域提供最先进的纳米结构表征和研究手段。该线站主要实验方法包括透射X射线显微镜(TXM)、纳米CT和谱学成像等。近日,用户先后在二维纳米复合材料、全固态锂金属电池研究领域取得重要进展。 纳米CT技术助力二维纳米复合材料连续化制备及骨再生应用研究。石墨烯、碳化钛MXene等二维纳米材料具有优异的力学、电学、光热转换和生物相容性,在航空航天、柔性电子、生物医学等领域具有重要应用前景。如何将二维纳米材料连续化组装成宏观高性能纳米复合材料,是实现这些应用亟需解决的关键科学问题。北京航空航天大学化学学院程群峰教授课题组和北京大学口腔医学院邓旭亮教授课题组在二维纳米复合材料连续化制备及骨再生应用研究领域取得了最新进展。团队联合提出了卷对卷辅助刮涂结合有序界面交联的新策略,规模化制备了有序交联的MXene(S-SBM)薄膜。该薄膜的纳米CT重构结果表明,S-SBM薄膜相比未交联MXene(S-MXene)薄膜具有更小的孔隙率,联合广角X射线散射结果,证实有序交联过程可以抑制MXene纳米片在干燥过程中的毛细收缩,从而规整密实组装MXene纳米片。此外,循环拉伸前后MXene薄膜的纳米CT重构(图h)结果首次证实了有序界面交联作用可以大幅抑制二维纳米复合材料内的裂纹扩展。这项研究解决了高性能二维纳米复合材料连续化制备的长期挑战,为其他二维纳米材料的高性能规模化组装及应用研究提供了新思路。 谱学成像技术助力基于PEO固态电解质的高能量全固态锂金属电池研究。全固态锂金属电池(ASSLBs)使用聚合物作为电解质,被广泛认为是实现高能量密度和提高安全性的最具有前景的系统。哈工大王家钧课题组在实验中通过引入具有强电子吸引能力的Mg2+和Al3+,与醚氧(EO)键有效配位,从而降低其对高价镍的溶剂化能力,减弱PEO基聚合物电解质与正极材料之间的界面相互作用。PEO-Mg-Al-LiTFSI电解质展现出优异的氧化稳定性,抗氧化能力超过5.0 V,同时在室温下实现了0.23 mS cm-1的离子电导率。实验结果表明,这种改性的固态电解质组装的全固态锂金属可稳定循环300次,表现出良好的循环稳定性和较低的界面阻抗。PEO-Mg-Al-LiTFSI组装的固态锂金属电池可稳定循环300次。PEO-Mg-Al-LiTFSI固态电解质所组装的软包电池展现出高达586 Wh/kg-1的能量密度,且在50次循环后容量保持率为80.8%。研究团队对固态电池正极颗粒的Ni元素进行了价态变化的同步辐射谱学成像方法表征。研究了不同电压范围内固态和液态电池沿各个方向发生的氧化还原反应以及电解质与富镍阴极之间的相互作用,揭示了高电压固态电池界面失效机制。通过优化Lewis酸与醚氧(EO)之间的配位,可提高聚合物固态电解质的离子电导率与电池内部的界面稳定性,探索其他类型的配位离子或功能化聚合物,也可以进一步提升聚合物固态电解质在极端条件下的电化学性能。这项研究为设计先进聚合物固态电解质开启了新的思路。 图a,b右图为根据纳米CT结果得到的S-MXene(a)和S-SBM(b)薄膜的三维重构结果。图h为循环拉伸前后MXene薄膜的纳米CT重构结果,首次证实了有序界面交联作用可以大幅抑制二维纳米复合材料内的裂纹扩展 图 a和b中的二维化学态相图展示了PEO-LiTFSI和PEO-Mg- Al-LiTFSI 中的 Ni83 粒子(放电态)在循环后吸收边能量的偏移。表明了Lewis酸配位效应提高了界面稳定性,促进了界面 Li+ 的传输和 SOC(State of Charge)的均匀性