《闪存光刻技术的新思路》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2020-08-28
  • 当NAND闪存的半间距(half-pitch)达到20 nm时,非易失性存储容量达到64 Gb 。到达14 nm 后,NAND闪存的半节距不再减少,现在更是已经进入了3D时代。但是,最近3D XPoint已在Optane平台中发现了应用程序。用于图案化构成这些存储器的20 nm半节距线的光刻技术是另一个机会,可以查看行业中当前已知的光刻方法的基本方面和局限性。

    图案化20 nm半间距线的方法是自对准双图案(SADP)。这种方法从80 nm的间距线开始,实际上仅用于支撑被称为间隔物的侧壁层(图1)。垂直蚀刻间隔物仅留下侧壁部分。然后去除原始线,并且间隔物形成40nm的节距线图案。

    图1.使用SADP(自对准双图案)时,侧壁间隔物定义的线是起始光刻胶的两倍。

    对于SADP,特征尺寸由间隔物宽度决定,而间隔物宽度又由沉积控制。光刻不影响特征尺寸,但是误差可能会产生交替的间距误差(“俯仰行走”);这可以通过使光刻与随后的间隔物沉积和蚀刻同步来补偿。

    40 nm线距光刻注意事项

    可以使用具有1.35数值孔径和193 nm波长的扫描仪通过浸没式光刻法形成80 nm的间距线。尽管在此工具上可以实现此分辨率,但必须限制照明。光源在y方向上距中心的距离会影响80 nm间距的第0和第1衍射级之间的相位差,该相位差也与散焦距离成比例。此外,为了获得最佳结果,应限制极化。

    图2.采用浸没式光刻的80 nm间距需要非常有限的照明。排除偶极子的橙色部分将改善散焦窗口。

    EUV工具也可以直接实现40 nm的间距,而无需使用SADP。但是,照明仍然限于叶形偶极子区域。

    图3. EUV光刻的40 nm间距直接受到旋转的影响。标签以度为单位指示0阶和1阶之间的相位差范围。红色空心圆圈表示原始目标源点的旋转(边缘相对于中心)。有些被旋转到无法再产生任何图像的位置。其他人则受到更大的散焦影响。

    这里的主要困难是EUV照明的旋转(因为EUV投影系统必须使用离轴反射镜),其旋转是从弧形缝隙的中心(即,曝光场)到边缘。在NXE:3400上,它的高度超过18度。如图3所示,在散焦为30 nm时,旋转可以将0阶和1阶之间的相位差范围从所选源点集的30度扩展到超过60度。这是可以预期的,因为旋转自然会在y方向上移动一段距离。如此大的范围将导致图像进一步退化,并且还会将光子划分为更多的相位差仓,从而导致更差的随机性。此外,由于将一阶从数值孔径中推出,某些点甚至旋转到不再能够产生图像的位置。

    40 nm线间距的选项总结如下:

    交叉点注意事项

    3D XPoint具有一个新组件,即x和y间距为40 nm的选择器存储器堆栈。假设通过SADP对40 nm的间距线进行了图案化,则堆叠的图案化具有三种选择。首先,可以使用2D SADP方法将堆栈图案化为2D阵列。或者,堆栈可以从两个交叉的1D SADP步骤中自动出现,一个用于x线,一个用于y线,如以下所示。当然,这需要一个额外的光罩。最后,堆叠甚至可能没有单独地图案化。但是,由于轮廓不是笔直的,此选项存在交叉点堆栈下部合并的风险图4)。如果选择堆叠之间的电介质与堆叠一起蚀刻而不是选择保留,则当然可以避免这种情况。

    图4.在第一个方向进行蚀刻之后,回填电介质,然后在另一个方向上进行切割。然而,对于倾斜的堆叠轮廓,堆叠的下部被电介质的上部屏蔽以免切割。

    交叉点堆栈制造选项总结如下:

    假设3D XPoint使用X-SADP + Y-SADP选项,则两层结构将需要7个SADP实例:底线,底交叉点X,底交叉点Y,中线,顶交叉点X,顶交叉点Y,顶线。转到四层,这将增加到13(之间的交叉点层为5组线+ 4对SADP对)。但是,与生产线SADP集成可能只能使用SADP 5次才能获得四层。

    3D NAND中的SADP

    由于20 nm位线半间距,3D NAND也最终使用了SADP。如果需要将位线半节距减小到20 nm以下,则可能需要自对准四重图案(SAQP)。

相关报告
  • 《行业超过NAND闪存的资本支出需求》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2018-07-15
    • 由于主要NAND供应商的超支,预计今年将进一步降低NAND闪存价格。IC Insights将于本月晚些时候发布其200多页的年度更新报告,即2018年McClean报告。 The Mid-Year Update 修订了IC Insights到2022年的全球经济和IC行业预测,这些预测最初发布于今年1月发布的2018年McClean报告中。 预计今年将超过41%的额外需求量(2017年NAND比特出货量增长41%,但是1H18 / 1H17比特量出货量仅增长30%)。因此,NAND闪存价格在2018年初已经开始下降也就不足为奇了。此外,预计今年下半年疲软步伐将会回升,并持续到2019年。 内存市场的历史先例表明,过多的支出通常会导致产能过剩和随后的价格疲软。三星,SK海力士,美光,英特尔,东芝/西部数据/ SanDisk和XMC /长江存储技术都计划在未来几年内大幅提升3D NAND闪存容量。
  • 《诺存微电子发布国内首款高速NOR闪存》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-04-17
    • 近日,在深圳举办的2019年中国电子展(CEF)上,苏州诺存微电子公司举办新品发布会,发布了国内首批含DTR倍速功能的Octa-SPI和Quad-SPI高速NOR闪存(64Mb-256MB)。 诺存微电子创始人彭海兵博士介绍,这一系列闪存新品具备三大特点,一是速度快,16倍于传统SPI NOR;二是引脚少,采用SOP16、SOP8 或 BGA24封装;三是可以与传统SPI完全兼容。基于这一特质,诺存微电子的新品相比美光、华邦、旺宏等老牌厂商具备更好的性价比,能够在安防、物联网、汽车电子、工控等市场得到广泛应用。 例如工控应用,诺存微电子的NM25L256FVA Octa Flash,更少的引脚可以显著减小MCU焊盘面积,提高需即时响应的工业人机互动应用速度;网络应用,NM25L256FVA Octa Flash突破了传统NOR的速度极限,可实现快速、可靠和安全的下一代企业级网络应用;消费电子及物联网应用,NM25L256FVA Octa Flash快速读写、低引脚数及体积小的优势,满足数码单反相机、无人机、家庭自动化、手持显示仪、手持投影仪和可穿戴设备等空间受限却又要求快速响应的应用。 资料显示,诺存微电子是由清华启迪、中金前海、中科创星等旗下基金投资的一家创业公司,创始人彭海兵博士本科毕业于清华大学,并在哈佛大学获得博士学位,核心团队由海归博士、国际知名技术专家和高级管理人才组成,包括Intel前副总裁、相关人才计划等国际顶尖人才,主导公司的管理、产品设计生产和后续市场销售工作。 但是据C114了解,闪存市场在2017年高达541亿美元,但被三星、东芝、美光、SK海力士四大巨头几乎垄断;而价值43亿美元的NOR闪存市场,赛普拉斯、旺宏、美光、华邦、兆易创新五大厂商也占据了绝大部分市场份额。毫无疑问,对创业公司来说,这一市场的门槛非常高。 彭海兵博士认可这一格局,并对C114表示,面临当前格局,诺存微电子采取"分步走"的市场策略,以技术创新冲击市场,不断壮大。短期产品注重高性价比,可竞争美光旺宏等高端产品;同时也考虑pin-to-pin兼容性,替代其他市场上流行款式。首批推出的几款含DTR倍速功能的Octa-/Quad-SPI 高速NOR闪存产品,填补国内空白,具备高速读取、高可靠性和低成本特点,2018年已经分批送样试用成功,目前在扩大市场阶段,打响品牌。中长期则主推全新的高密度存储陈列,以独特的专利技术冲击市场,引领技术创新,推出世界首款三维NOR闪存,低成本高性能,适用于代码运行和数据存储,可竞争传统NOR和NAND两者约540亿美金的市场。 彭海兵博士介绍,诺存微电子研发的NOR闪存采用全新三维架构;传统NOR闪存的平面设计已经接近物理上的极限,产品可靠性降低、成本攀升,三维化是技术变革趋势;诺存微电子基于三维架构开发新型高密度NOR闪存,兼具传统NOR和NAND两者的优势,大大降低NOR的价格,又可以兼顾传输速度和随机存取等优点,市场前景广阔。 "目前我们已经研发成功世界首款三维高密度NOR闪存原型芯片,应用前景广阔。"彭海兵博士表示,"我们期待在全球NOR闪存市场份额饼状图上,未来几年出现诺存的名字!" 随着人工智能、物联网、大数据、5G等新兴产业的涌现,NOR 闪存又找到了新的用武之地,未来几年,传统NOR闪存市场有望出现较大规模增长,这对诺存微电子来说,不仅有机会替代原有厂商的市场份额,还面临新增的市场空间。同时,诺存的高速高密度NOR闪存,成本可竞争NAND,中期产品将冲击SLC NAND市场,开拓新疆域。 彭海兵博士指出,尽管是一家创业公司,诺存微电子拥有国际化的创始团队,在产品技术和市场渠道商均有丰厚积累,而国内对集成电路产业的战略重视,让诺存微电子得以把握这一机遇,脚踏实地去提升自己,进而有机会挑战被巨头垄断的市场,致力于打造世界级的芯片企业。