Systemic Effects of Missense Mutations on SARS-CoV-2 Spike Glycoprotein Stability and Receptor Binding Affinity
View ORCID ProfileShaolei Teng, Adebiyi Sobitan, Raina Rhoades, Dongxiao Liu, Qiyi Tang
doi: https://doi.org/10.1101/2020.05.21.109835
Abstract
The spike (S) glycoprotein of SARS-CoV-2 is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18,354 mutations in S protein were analyzed and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.