《揭示重复基因表达分化的分子机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-04-27
  • 表达模式是基因的基本属性,了解基因表达模式在进化中的改变及其分子机制是进化生物学研究的重要内容。然而,由于表达模式本身是个非常复杂的概念,前人对其进化分子机制的研究尚不深入,典型的例子并不多见。中国科学院植物研究所孔宏智研究组以拟南芥中的APETALA1(AP1)和CAULIFLOWER(CAL)基因为例,对重复基因表达分化的模式、过程和机制进行了研究。

    研究人员发现,作为一对由基因组加倍事件产生的重复基因,AP1和CAL在表达的时、空、量上均有差异,而且这些差异与其调控区一些转录因子结合位点的存在与否有关。在众多的转录因子结合位点中,AP1调控区的一个CArG box是导致两个基因表达分化的重要原因——由于该位点的存在,AP1既能自调控、又能被CAL调控,从而使AP1能够长时间维持较高的表达水平。通过进化分析,研究人员发现AP1的这个自调控位点是在拟南芥和琴叶拟南芥的最近共同祖先中获得的,是对祖先基因中个别碱基的修饰。研究还发现,AP1和CAL在调控元件上的差异是逐渐积累的,前者在保留祖先所有转录因子结合位点的同时获得了新的调控元件,而后者在进化的早期就丢失了多个转录因子结合位点。

    该研究结果不仅阐明了AP1和CAL表达分化的分子机制,而且揭示了调控元件和表达模式进化的过程和特点。特别值得一提的是,该研究表明重复基因的表达分化其实是一个非常复杂的动态过程,不能用简单的经验模型来解释。研究结果对于理解基因表达进化的模式和机制具有重要意义,同时为深入理解重复基因的表达分化提供了新的思路。

相关报告
  • 《研究揭示调控iNKT细胞分化终末成熟的分子机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 9月24日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院生物化学与细胞生物学研究所刘小龙研究组的最新研究成果“Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23”,首次揭示了调控iNKT细胞分化终末成熟的分子机制。   iNKT细胞是一类特殊的T细胞亚群,表达特定的T细胞受体(TCR)和NK细胞表面受体(NK1.1)。iNKT细胞不同于经典的T细胞,能够识别MHC-I分子类似物CD1d分子递呈的糖脂类抗原,在抗原刺激后,能够迅速分泌一系列细胞因子,从而激活其他免疫细胞,在生理病理过程中发挥重要作用。大部分iNKT细胞由双阳性胸腺细胞(CD4+CD8+)分化而来, 其分化成熟过程分为四个阶段(阶段0-阶段3)。阶段0到阶段1,iNKT细胞进入快速增殖期;阶段1到阶段2上调CD44表达,获得效应记忆性;阶段2到阶段3,上调NK1.1表达,成为功能成熟的iNKT细胞。其中阶段2到阶段3是iNKT细胞分化的最后阶段,对于建立iNKT细胞特定的免疫功能十分关键,然而调控该分化阶段的分子机制一直不清楚。   刘小龙研究组的工作揭示,在小鼠T细胞中特异敲除转录中介体亚基Med23后,iNKT细胞的分化完全停滞在阶段2,这为研究iNKT细胞终末分化成熟提供全新模型。对野生型阶段2和阶段3的iNKT细胞转录组进行比较,发现阶段2和阶段3的iNKT细胞具有不同的转录调控以及免疫功能相关基因的表达。进一步的功能分析表明,相较于阶段2的细胞,阶段3的iNKT细胞不仅可以上调一系列NK细胞相关的表面受体;在受到抗原刺激后,还具有快速分泌细胞因子和趋化因子的能力。然而,Med23缺失的iNKT细胞功能受损,甚至不能达到野生型阶段2的iNKT细胞的功能水平,表现出抗原应答不敏感,丧失免疫细胞招募能力,最终导致iNKT细胞清除肿瘤的能力受损。他们的研究还进一步揭示,在Med23缺失的iNKT细胞中过表达AP-1家族转录因子c-Jun能够部分拯救iNKT细胞的分化缺陷。该研究深入探讨了iNKT细胞从阶段2到阶段3过程中免疫功能建立的机理,揭示了Med23调控iNKT细胞分化终末成熟的作用与机制。   在读博士生徐昱为论文的第一作者,研究员刘小龙为通讯作者。该研究得到研究员吴立刚及其学生李荣红、张宏道在转录组测序方面的大力帮助。该研究得到国家自然科学基金、中国科学院先导专项、中国科学院青年创新促进会和中国博士后科学基金的经费资助,同时获生化与细胞所公共技术服务中心动物实验技术平台、细胞生物学技术平台的技术支持。
  • 《Nature | 转录-复制相互作用揭示了细菌基因组调控》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-29
    • 2024年1月24日,纽约大学格罗斯曼医学院等机构的研究人员在杂志Nature上发表了题为Transcription–replication interactions reveal bacterial genome regulation的文章。 生物体通过几种在整个基因组中重复出现的调控模式来确定数千个基因的转录率。在细菌中,基因的调控结构与其表达之间的关系对于单个模型基因回路是很清楚的。然而,在基因组尺度上缺乏对这些动态的更广泛视角,部分原因是细菌转录组学迄今为止只捕获了数百万个细胞平均表达的静态快照。因此,基因表达动力学的全部多样性及其与调控结构的关系仍然未知。 该研究提出了一种新的全基因组调节模式分类,该分类基于每个基因对其自身复制的转录反应,研究人员称之为转录-复制相互作用谱(TRIP)。通过分析单细菌RNA测序数据,研究人员发现对染色体复制普遍扰动的反应将生物调控因子与染色体上的生物物理分子事件相结合,揭示了基因的局部调控背景。虽然许多基因的 TRIP 符合基因剂量依赖性模式,但其他基因以不同的方式分化,这是由操纵子内位置和抑制状态等因素决定的。通过揭示基因表达异质性的潜在机制驱动因素,这项工作为模拟复制依赖性表达动力学提供了一个定量的生物物理框架。